
Skip It: Take Control of Your Cache!
Shashank Anand

ETH Zurich

Zürich, Switzerland

sanand@student.ethz.ch

Michal Friedman

ETH Zurich

Zürich, Switzerland

michal.friedman@inf.ethz.ch

Michael Giardino
∗

Huawei Technologies

Zürich, Switzerland

michael.giardino@huawei.com

Gustavo Alonso

ETH Zurich

Zürich, Switzerland

alonso@inf.ethz.ch

Abstract
Mechanisms to explicitly manage the presence of data in

caches are fundamental for the correctness and performance

of modern systems. These operations, while critical, often

incur significant performance penalties even when carefully

used. Moreover, these mechanisms are implemented in pro-

prietary and often undocumented hardware, so research into

optimizations and novel designs is mostly limited to slow,

simplified software simulations. In this paper, we design

microarchitectural extensions to support two types of user-

controlled cache writebacks to main memory. Furthermore,

we propose Skip It, a mechanism built on top of our exten-

sions that substantially reduces redundant writebacks. We

implemented these designs on the open-source BOOM out-

of-order RISC-V CPU. The performance in hardware is ≈100
cycles which favorably compares to similar operations in

commercially available server-class platforms. In addition,

Skip It performs as well as or better than state-of-the-art

software techniques for avoiding unnecessary writebacks.

CCS Concepts: • Computer systems organization →
Multicore architectures; Superscalar architectures; •
Hardware → Non-volatile memory.

Keywords: microarchitecture, cache coherence, out-of-order,

multicore, cacheline flush, fence, non-volatile memory, FPGA

simulation, RISC-V

ACM Reference Format:
Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo

Alonso. 2024. Skip It: Take Control of Your Cache!. In 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’24), April 27-
May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3620665.3640407

∗
Work was done while at ETH Zürich

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0385-0/24/04. . . $15.00

https://doi.org/10.1145/3620665.3640407

1 Introduction
While transparent management of CPU caches is often the

most desirable behavior of a caching system, there are sev-

eral scenarios in which a user or system would prefer fine-

grained control of the presence of cached data. Non-volatile

main memory (NVMM) is one case in which this control

is critical. Persistent byte-addressable memory goes a long

way to enable crash consistency [8]. However, due to the

lack of fine-grained control of the cache contents, correct

persistent algorithms are extremely challenging to imple-

ment and costly in terms of performance [17]. In the case of

DMA engines, modifications to a locally cached copy must

reach memory before subsequent accesses. In both cases,

ensuring correctness in the presence of caches requires ex-

plicitly writing back data to ensure consistency. With the

introduction of coherent interconnects such as CXL [62] that

can connect multiple heterogeneous memory domains [49,

42], deliberate control of cached data becomes even more im-

portant. Explicit cache control can also assist the hibernation

of extremely low power devices [80, 30] and help to miti-

gate some microarchitectural timing-channel attacks [14] by

partitioning on-core resources [44, 75, 12].

Most modern computer architectures have methods for

controlling the eviction and writeback of cache data. These

instructions, however, do not come without cost. To ensure

that writebacks have completed, programmers must inte-

grate costlymemory barriers (fences).Whenmultiple threads

are involved, the number of writebacks and fences increases,

severely degrading performance. Moreover, even when data

has already been written back by one thread, other threads

are oblivious to the cache line state, and will redundantly

writeback and fence the same data. Several researchers have

introduced software methods to mitigate these unnecessary

overheads by tracking whether a cache line has already been

written back [73, 23, 71]. While these techniques are effective,

hardware support can hide complexity from the program-

mer and reduce software overhead. However, due to the lack

of open-source hardware, it has not been possible to realis-

tically evaluate such proposals. The advent of performant,

out-of-order RISC-V cores [79, 76] allows for the implementa-

tion and evaluation of exactly these types of novel hardware

designs. Unfortunately, while the RISC-V instruction set ar-

chitecture (ISA) defines writeback instructions, they have

not been implemented in these cores.

This paper presents a complete hardware implementation

of two variants of writeback instructions for the RISC-V

https://orcid.org/0009-0003-8798-7011
https://orcid.org/0009-0003-5588-8617
https://orcid.org/0000-0002-9906-720X
https://orcid.org/0000-0002-4396-6695
https://doi.org/10.1145/3620665.3640407
https://doi.org/10.1145/3620665.3640407

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

BOOM Core: clean and flush. Furthermore, we augment the

existing fence implementation to maintain correct writeback

ordering. In describing the implemented mechanisms, we

provide a detailed examination and methodological descrip-

tion of BOOM core internal structures and related compo-

nents. We show that the clean and flush latencies are ≈ 100

cycles per cache line, which is favorably comparable to and

often lower than commercial x86 and ARMv8 CPU imple-

mentations. Furthermore, we demonstrate the advantages

of an open architecture by introducing Skip It, a hardware

optimization that significantly reduces the number of un-

necessary flushes. Skip It performs up to 2.5× better in our

experimental setup than FLiT [73] and similarly to other

state-of-the-art software solutions, without requiring any

software support. The implementation of the writeback in-

structions and Skip It are publicly available [24].

2 Background
To design and implement support for user-controlled cache

writebacks, we built upon existing research and several open-

source components. In this section, we provide the necessary

background on the RISC-V ecosystem including the memory

semantics, coherence, the Rocket and BOOM cores, Chip-

yard, and the existing cache control mechanisms. Deeper

discussion of the BOOM core internals can be found in § 3.

2.1 RISC-V
RISC-V is a modular, open, reduced ISA [72], which elimi-

nates licensing the ISA, removing impediments associated

with developing hardware and related software toolchains.

The RISC-V ecosystem provides a platform for experimenting

with new instructions, microarchitectural features, and func-

tionality. RISC-V has seen a plethora of open-source designs

ranging from tiny embedded cores [68] to massively parallel

architectures [78], in-order cores [6, 77] and complex out-of-

order systems [79, 16, 76]. Several have been taped-out, and

some have been commercialized [63, 51] with indications

that server class RISC-V SoCs are on the horizon [69].

Chipyard [4] is a framework for agile RISC-V SoCs design.

It integrates configurable open-source IP blocks, software

register transfer level (RTL) and FPGA-accelerated simula-

tion, automated VLSI flows, and workload generation for

bare-metal and Linux-based systems. Rocket Chip [6] is an

SoC generator that includes a core, caches, and interconnects.

Several parameters are configurable, such as the FPU, cache

size, and TLB size. The configurability and composability

of these modules allow developers to quickly develop new

designs.

2.2 TileLink and Coherence Protocol
TileLink [20, 67] is a chip-scale interconnect that provides

low-latency connectivity betweenCPUs, accelerators, caches,

memory, and other SoC peripherals. A link connects a client

Acquire Release Probe
Client Manager

Get
copy

Acquire

GrantAck

Gra
nt

Cache
copy

Client Manager

ProbeAck

Prob
e

Get
copy

Client Manager

Release

Rele
aseA

ck
Write
dirty
data

Figure 1. Three TL-C transactions are needed for coherence.

agent to a manager agent. An agent may be part of multiple

links, acting as a client in some and as a manager in others.

A legal TileLink network topology always forms a directed

acyclic graph (DAG), and TileLink is deadlock-free.

An agent-to-agent link consists of up to five unidirectional

channels: {𝐴, 𝐵,𝐶, 𝐷, 𝐸}. 𝐴 is used by the client to send read

or write messages,𝐷 is used by themanager to send response

messages. {𝐵,𝐶, 𝐸} are required for cache coherence.

There are three main coherence messages, the transac-

tions of which are shown in Figure 1. Acquire is used by

the client to obtain permission from the manager to get a

copy of a cache line. Acquire messages are sent over 𝐴 and

always trigger a Grant message from the manager on 𝐷 . The

client acknowledges the Grant with a GrantAck response

on 𝐸. Acquire operations may also trigger the manager to

generate recursive Probe or Release requests to other agents.

Release operations are issued by clients on 𝐶 to downgrade

the permissions of a cache line voluntarily. The manager

agent acknowledges it with a ReleaseAck message on 𝐷 . The

Probe message is issued on 𝐵 by the manager to modify or re-

voke a client’s permissions to a cache line. The client adjusts

the line’s permissions and responds with a ProbeAckmessage

on 𝐶 that may contain dirty data. These three messages can

be used to implement a cache coherence protocol on RISC-V.

An example is MESI [55], an invalidation-based cache

coherence protocol for writeback caches. It contains four

primary cacheline states: modified, exclusive, shared, and

invalid which can be maintained by the aforementioned

TileLink messages. Modified and exclusive states imply a

single owner, while a cacheline in shared state may have

multiple owners. For example, the transition from shared

to modified state and vice versa can be accomplished using

the Acquire and Probe TileLink messages. When an agent

requests a cacheline that is in modified state in another cache,

a Probe message signals the exclusive owner of the cacheline

to downgrade its permissions and writeback its dirty data.

Similarly, when an agent wants to write data to a local copy

of a cacheline in shared state, it must request for exclusive

2

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

permissions using Acquire which in turn triggers a Probe to
revoke the copies of the line held by other agents.

2.3 Berkeley Out-of-Order Machine (BOOM)
The Berkeley Out-of-Order Machine (BOOM) [15] is an open-

source, out-of-order RISC-V CPU generator developed in

Chisel [7]. SonicBOOM [79] is the third-generation instance

of BOOM and is a state-of-the-art platform for research in

microarchitectural design. The core is parameterizable, syn-

thesizable, and can be implemented on an FPGA. The BOOM

core re-uses blocks from the Rocket chip [6] such as TLBs,

page table walkers (PTWs), and the control status register

(CSR) file, while implementing a new pipeline and data cache.

The architecture of BOOM will be discussed in detail in § 3.

2.4 RISC-V Weak Memory Ordering
RISC-V weak memory order (RVWMO) is a weak memory

model [72]. Its rules are primarily concerned with accesses

to the same or dependent memory locations, but it still pre-

serves multi-copy atomicity. Multi-copy atomicity means

that a value becomes globally visible to all other proces-

sors at the same time. For a single-processor system, the

global order corresponds to the program order. However,

for a multi-processor system, a processor does not neces-

sarily see that the instructions being executed by another

processor correspond to the other processor’s program order.

Therefore, to guarantee ordering, one needs atomic mem-

ory operations, store conditional or load-reserve operations

(SC/LR), or fence instructions.

2.5 Cache Management
There are multiple scenarios in which deliberate control of

data in caches is essential for correctness. One example is

non-volatile main memory (NVMM) where writing back

data is fundamental to maintain a consistent state of the

data. Without proper management, the order of the writes

to a volatile cache is not necessarily preserved when data is

written from cache to main memory. If caches are volatile,

upon a crash, all cache content will be lost, but the content

of the main memory will remain. Thus, later writes may be

propagated to the NVMM before earlier writes, leading to

data inconsistencies in the main memory.

Consistency is not only important in the case of NVMM,

but in many cases in which devices share the same memory

space. Disaggregated memory in which multiple nodes share

an address space (e.g. CXL-attached memory [62]) correct

write ordering must be guaranteed, similar to the NVMM

scenario. Peripheral devices often share memory as well.

Thus, for consistent DMA reads from main memory, the ap-

plication needs to ensure that data is properly written-back

before the DMA transaction is initiated. Only by calling ex-

plicit write-back instructions, can programmers control the

ordering in which these writes are written-back to memory.

There are various ways to explicitly writeback data to

main memory: invalidating and non-invalidating, synchro-
nous and asynchronous. A synchronous writeback blocks

following instructions while an asynchronous one can occur

at a later point in time subject to memory model constraints.

An invalidating writeback, which we will refer to as a flush,
invalidates the cache line when the data is written back. A

non-invalidating writeback, a clean, leaves the cache line

valid but ensures the modified data reaches main memory.

Modern ISAs have several variants of these instructions,

but we limit our discussion to the most relevant. An asyn-

chronous clean is a clwb and dccvac, while an asynchro-

nous flush is clflushopt and dccivac in x86 and ARM

respectively [33, 5]. To make any of these writebacks syn-

chronous, one can use a fence, or in x86, a synchronous flush

clflush. The RISC-V ISA defines cachemanagement instruc-

tions (§ 2.6), however explicit writebacks (clean and flush)

are unimplemented.

2.6 RISC-V Cache Control
The FENCE instruction in RISC-V is used to force an order-

ing of the program’s execution. It is defined as FENCE PRE,
SUC, where PRE (predecessor) and SUC (successor) are flags
indicating that the set of operations in PRE must complete

before the set of operations in SUC are allowed to execute.

The RISC-V Cache Management Operations (CMOs) [60],

introduce instructions that operate on data in the memory hi-

erarchy. Of interest to us are the CBO.CLEAN and CBO.FLUSH
cache management instructions. They operate on the set

of coherent caches accessed by the agent executing the in-

struction. If a cache line is dirty, CBO.CLEAN propagates it

to all higher level caches and writes it to memory; how-

ever, copies still remain in all caches that possessed one.

CBO.FLUSH atomically invalidates and cleans the cache line.

Even though these instructions are defined in the RISC-V

ISA, the only instruction which has been implemented on

all platforms is FENCE. This user-level fence ensures that all
memory operations before the FENCE are completed before

any memory operations after the FENCE are handled. SiFive

released a vendor instruction extension CFLUSH_D_L1 that
could evict from the L1 data cache using TileLink. If an

L2 cache is present, the original CFLUSH_D_L1 instructions
will only flush the dirty data to L2. Moreover, CFLUSH_D_L1,
limited as it is, was only implemented for the in-order Rocket

Chip making the instruction unusable on the BOOM core.

3 BOOM Architecture
This section examines relevant internal architecture of the

BOOM core and related components. While some of this

information is available in [79], much of the architecture

and behavior is undocumented outside of the code. We aim

3

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

Load Queue (LDQ)
32 Entries

Store Queue (STQ)
Buffer/Forwarding

32 Entries

L1 Data Cache
32 KiB 8-way

8 B/cycle

Load Store Unit

Figure 2. SonicBOOM Load Store Unit (LSU) contains 32 en-

try load (LDQ) and store (STQ) that transmit data at 8 B/cycle.

to provide necessary background to understand our imple-

mentations and a methodical description of the underlying

architecture.

3.1 Reorder Buffer
The SonicBOOM’s re-order buffer (ROB) is a queue that

tracks the status of all in-flight instructions in the pipeline.

The ROB consists of a bsy flag that tracks whether the instruc-
tion is currently executing. Once an instruction completes

execution, the bsy flag is unset, which increments the head

of the ROB, and the instruction is considered committed. The

ROB provides the illusion that a program executes in-order,

for each processor.

3.2 Load Store Unit
The load-store unit (LSU) of the SonicBOOM (Figure 2) is

capable of firing two requests per cycle to the memory sys-

tem. Firing refers to the issuing of the instruction to the data

cache from the LSU. The LSU contains two queues: the load

queue (LDQ) and the store queue (STQ). LDQ entries contain

only the load’s address, while STQ entries contain both the

store’s address and data, thus acting as a store buffer.

The LDQ tracks the status of load instructions, and fires

them out-of-order as soon as their data is ready. The STQ

only fires a request when the head of the ROB points to

the same request, ensuring that stores are fired in order.

Incoming loads probe the STQ and may forward data from

an STQ entry if a match is found and data is available in the

store buffer. Additionally, the LSU is responsible for detecting

and marking dependencies between requests in the queues.

This ensures that reordering does not violate the guaranteed

memory model.

Fence instructions, as described in § 2.6 and § 4, ensure

that all previous memory operations, in program order, are

completed before subsequent operations are fired into the

data cache. Fence instructions are stored in the STQ of the

LSU. All LDQ instructions that arrive after the fence are

marked as dependent on the fence. This prevents subsequent

loads (or any LDQ request) from being issued before the

fence is completed. The fence, by virtue of being an STQ

TL-D TL-A TL-E

TL-BTL-C

Data & Metadata
SRAM Arrays

Probe
Unit

Writeback
Unit

8 MSHRs
wb_req
wb_resp

mshr_rdy

wb_rdy
wb_req

16 B/cycle

signal

Figure 3. SonicBOOM L1 Data Cache contains 16 B data

buses and signals. Its external connections are via TL-X.

request, is guaranteed to not be executed before previous

instructions, in program order, are committed.

3.3 L1 Data Cache
The SonicBOOM contains a non-blocking 32 KiB 8-way

writeback L1 data cache. Figure 3 provides a high-level overview

of its components.

The data cache contains two static RAM (SRAM) arrays for

data and metadata. The metadata array stores information

on cache lines such as their tag, coherence state, and the

dirty bit. The data array stores the actual data.

When a request arrives in the data cache, the tag and in-

dex are compared with the metadata. On a hit, the request

is served immediately. Otherwise, a miss status holding reg-

ister (MSHR) is allocated to serve the request. MSHRs are

responsible for retrieving the cache line, updating the data

and metadata arrays, and replaying the request.

Multiple misses to the same cache line may be served by a

single MSHR. This is accomplished by using the replay queue

(RPQ), which exists for every MSHR. Upon a cache miss, it

probes the MSHRs to check if one has already been allocated

for this line. If so, the instruction may be buffered by the

RPQ. Upon successful cache line retrieval, the RPQ is drained

and all requests are replayed in the data cache in order of

arrival. The request that caused the initial MSHR allocation is

referred to as the primary request and all subsequent requests
that piggy-back are called secondary requests.

The data cache of the SonicBOOM does not currently sup-

port upgrading permissions of a cache line via the TileLink

message AcquirePerm. Therefore, the RPQ only accepts a sec-

ondary request if the permissions required are less than or

equal to the primary request permissions. For example, if the

MSHRwas allocated as a result of a load, it is unable to accept

a store as a secondary request. If the data cache is unable

to handle a queued request, it sends a negative acknowl-

edgement (nack) to the LSU. This may occur when there

4

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

are no free MSHRs to handle the request or if a matching

MSHR exists but is unable to accept the secondary request.

On receiving a nack, the LSU retries at a later time.

The writeback unit (WBU) releases dirty data to a higher

level cache. The probe unit handles coherence probes from

higher level agents, and may request the WBU to release

dirty data. It is possible that a cache line being written back

is simultaneously probed. As shown in Figure 3, the WBU

may temporarily hold probes by signaling via wb_rdy. The
data cache has a TileLink to a higher level memory agent.

This link is used by the MSHRs to acquire data, the probe

unit to receive probes, and the WBU to release cache lines.

For stores, or broadly STQ instructions, it is important to

observe that they are only fired into the data cache when

they are committed, and not before as loads are. Conversely,

when these instructions are in the data cache (even if they are

waiting in MSHRs), they are considered by the ROB to have

completed. Consider two store instructions arriving in the

data cache one after the other. If the subsequent store were

to miss and the previous were to hit, the subsequent store

would be completed immediately while the previous would

be allocated an MSHR. However, two consecutive writes can-

not be reordered. In this case, a probe to the pending MSHR

must wait until the store completes, thus implementing a

slightly stronger memory model than the RISC-V weak mem-

ory order. This is accomplished using the mshr_rdy signal

(Figure 3).

3.4 Last Level Cache
The SiFive inclusive cache [64] is a parameterized last-level

cache generator included in Chipyard. The SonicBOOM can

be configured with this module as its L2 cache. It enforces co-

herence among a set of caching agents using an invalidation-

based coherence policy implemented using a full-map of

directory bits stored with each cache line’s metadata.

A detailed discussion of the L2 cache, shown in Figure 4

is beyond the scope of this paper; we restrict ourselves to

relevant components. SinkC is a module that receives incom-

ing TileLink C (TL-C) requests. The ListBuffer is a generic
hardware queue that stores buffered TL-C requests which are

later scheduled to the L2 MSHRs. The SourceD module gener-

ates TileLink D (TL-D) responses. The BankedStore contains
the actual cache line data. Finally, the Directory stores cache

lines metadata (i.e. dirty bit, state of the line, and owners of

the line). As seen in Figure 4, the L2 cache contains a pair

of TileLinks. The inclusive cache acts as the manager to L1

caches and as the client to main memory.

4 Memory Semantics
Before explaining the implementation details of CBO.CLEAN
and CBO.FLUSH we present the memory semantics of these

instructions, and specify their interactions with fences, be-

cause the writeback semantics are not defined for RISC-V.

SourceBSinkA SinkC SourceD SinkE

SinkBSourceA SourceC SinkD SourceE

MSHRs

Directory

Banked
Store

ListBuffer
(Request)

Release

W
rit
e

Read

ReleaseAck
ReleaseDRAMWriteBack

Pr
ob

ed
D
at
a

Probe

ReleaseAck

Pr
ob

eA
ck

Figure 4. The SiFive inclusive cache contains (meta)data

arrays, buffers, and connects to L1 caches and main memory

via TileLink.

The full RISC-V memory model for the other instructions is

described in [47, 48]. While Pelley et al. [56] describe gen-
eral persistence model semantics, which may be similar or

different from the consistency semantics, in this section we

refer to the semantics of the lower level instructions. We

refer to the instructions CBO.FLUSH and CBO.CLEAN in § 2.6

collectively as writeback instructions. Writebacks and fences

enable the eviction of a specific cache line associated with a

particular address at a given point in time.

Consider a memory location 𝑐 and its associated cache line

𝐶 such that 𝑐 ∈ 𝐶 . writeback(c) guarantees that all writes to
𝑐′ ∈ 𝐶 , where 𝑐′ is any memory location associated with 𝐶 ,

that happened before that writeback(c), are written back to

memory. Thus, a writeback(c) is ordered only with respect to

all previous writes to 𝐶 , but not with respect to subsequent

writes.

To improve performance and accommodate multiple write-

backs in parallel to different memory locations, writeback

instructions are handled asynchronously. Now consider two

addresses 𝑐1 and 𝑐2, represented by the cache lines𝐶1 and𝐶2.

writeback(𝑐1) followed by a writeback(𝑐2) does not guaran-
tee that all writes to 𝐶1 that happened before writeback(𝑐1)
are written back to memory before 𝐶2 is written back by

writeback(𝑐2). Moreover, to be aligned with BOOM’s out-of-

order execution, the asynchronous writeback is committed

out-of-order as well, and does not necessarily complete its

execution before the next instruction is committed.

Figure 5 demonstrates three scenarios. In (a), even though

𝑥 and 𝑦 are committed in order, because data is cached, the

5

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

(c) Writeback
 & Fence

1: x = 1
2: writeback(&x)
3: fence()
4: y = x

(b) Only Writeback

1: x = 1
2: writeback(&x)
3: y = x

(a) No Writeback

1: x = 1
2: y = x

Figure 5. Memory semantics via three writeback scenarios.

actual write-back to memory can happen at any point in

time. Therefore, 𝑦 might be written back before 𝑥 .

In line 2 of scenario (b), writing back the cache line 𝑋

that holds 𝑥 is asynchronous and ordered with respect to

all earlier writes to 𝑋 . As mentioned, writing back is done

asynchronously to improve performance, and is not handled

in order with respect to other writebacks. As a result, in (b),

𝑦 is not necessarily written back to memory after 𝑥 , even

though writeback(x) was issued before the write to 𝑦.

Sometimes, however, a cache line needs to be written back

at a specific point in execution to maintain certain guaran-

tees. Using a fence ensures that memory instructions are not

reordered with respect to this fence. Memory instructions

that appear prior to the fence in program order cannot be

reordered with respect to instructions that appear after the

fence. More specifically, the fence implies that all memory

operations (including writebacks) prior to the fence are com-

mitted before those that follow the fence are executed. The

RISC-V ISA defines 6 practical fence instructions of vari-

ous strengths [72]. Here, we refer to the strongest fence, i.e.

FENCE RW, RW that is the only one that is implemented on

the BOOM core and we show how its semantics are extended

with respect to writeback instructions. Given a location 𝑐 ,

writeback(c) followed by fence(), guarantees that all writes to
cache line 𝐶 , that happened before writeback(c), are written
back to memory before any memory instruction that follows

the fence() is executed by the same thread. Thus, in scenario

(c), by calling fence() after writeback(&x), it is guaranteed
that by the time that 𝑥 is assigned to 𝑦 in line 4, the updated

value of 𝑥 will reside in main memory.

These semantics are closely related to ARMv8’s writeback

semantics [59], i.e., a writeback of a cacheline is only ordered

with respect to previous writes to the same cacheline. In

x86 [58], on the contrary, due to its TSO nature, a writeback

of a cacheline is ordered with respect to all previous writes to

any cacheline. Furthermore, The only type of a fence/barrier

that is implemented on the BOOM core is the strongest fence,

and has an equivalent behavior to the strongest fences on

x86 and ARMv8.

We note that the RISC-V memory model is weak and does

not define the writeback semantics formally, thus we define

these writeback semantics accordingly. However, the BOOM

core implements only the reordering of loads, providing a

stricter model. Because we encode our writeback instructions

as a store in § 5.1, writeback instructions are ordered with

Flush Status
Holding Register

(FSHR)

Flush Unit

Flush
Queue

Fl
us

h
Co

un
te

rforward_data

RootRelease RootReleaseAck

flush_rdy
flushing

enqueue

dequeue
probe_invalidate

wb_invalidate
wb_rdy

probe_rdy

Figure 6. The Flush Unit provides the mechanisms to sup-

port CBO.X instructions via new signaling, FSHRs, a flush

queue and a flush counter.

respect to any previous write to any cacheline on the BOOM

core, similar to x86. In addition, it is also ordered with respect

to subsequent writes to the same cacheline. As mentioned,

flushes are asynchronous and not reordered with respect to

one another. To guarantee ordering, a fence() must be used.

5 Flush Microarchitecture
This section describes our design and implementation of the

flush unit and associated architectural support for CBO.X
(CBO.FLUSH and CBO.CLEAN) instructions in the BOOM core.

We present the flush unit’s architecture and discuss the

fence instruction modifications to ensure compatibility with

CBO.X.

5.1 Encoding
CBO.X are encoded as STQ requests in the LSU, ensuring that

the request is only fired into the data cache when the ROB

head points to this instruction. As discussed in § 3.2 this

means CBO.X instructions are executed in program order.

We introduce two new TL-C messages: RootReleaseFlush
and RootReleaseClean (collectively RootRelease). To avoid ex-

panding the op-code bitvector, we encode the messages inter-

nally as TL-C ProbeAck with parameters FLUSH and CLEAN.
We additionally introduce a TL-D message RootReleaseAck
which is used to acknowledge RootRelease requests. This

is encoded as a TL-D ReleaseAck message with parameter

ROOT.

5.2 Flush Unit
The flush unit is a crucial component of implementing micro-

architectural support for RISC-V CMOs (§ 2.6) in the BOOM.

It is integrated into the data cache and is responsible for

handling writeback requests. Figure 6 provides a high-level

overview of the flush unit’s components. We emphasize that

because a writeback unit already exists in BOOM, we denote

6

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

this component as the Flush Unit, even though it handles

both CBO.FLUSH and CBO.CLEAN.

Flush Queue. The flush queue buffers all incoming CBO.X
requests. Some relevant fields of a flush request are: addr, the
address to be written back; is_hit, does the cache line hit?;
is_dirty, is the cache line dirty? (only relevant if hit = 1);

is_clean, is this a CBO.CLEAN? This bookkeeping data is

directly inferred from cacheline metadata which is always

fetched with data cache requests. Thus, no overhead is added

to the transmission or storage of a cacheline’s metadata.

We designed the flush request to contain all pertinent

cache line information to reduce metadata array contention.

Flush unit performance could be degraded by an arbitrary

number of cycles due to metadata contention among flush

status holding registers (FSHRs), MSHRs, the probe unit, and

the request queued into the data cache. However, we note

that the consistency of queue entries must be ensured as an

unspecified amount of time may pass between enqueuing

and dequeuing a flush request. We explain how we preserve

consistency in § 5.3.

When the LSU queues a CBO.X request into the data cache,
it is accepted by the flush unit if it has free space in the flush

queue to buffer the request. If the flush queue is full, the data

cache sends a nack to the LSU and the LSU will retry at a

later point in time. Because the LSU tracks all dependencies

and ordering between requests (§ 3.2), a request that nacks as

a result of a full flush queue does not violate the program or-

dering. Once a CBO.X request is buffered, the corresponding

instruction is considered to be ready for commit. This means

that subsequent STQ and dependent (to the same cache line)

LDQ requests are free to proceed.

The flush queue is highly beneficial during periods with

many writeback instructions. By buffering and thus allow-

ing the LSU to commit multiple writeback instructions, it

frees the LSU to handle newer requests. Furthermore, it also

reduces contention in the data cache, as buffered requests

are considered completed and are no longer retried by the

LSU (similar to stores forwarded to an MSHR).

Flush Status Hit Register. FSHRs are responsible for

asynchronously executing CBO.X requests. The flush unit

contains 8 FSHRs. Every cycle, if the flush queue is non-

empty, a free FSHR is allocated by dequeuing the request

from the flush queue head. FSHRs are round robin allo-

cated [65]. Each FSHR contains a data buffer used to tem-

porarily store data being written back to main memory.

The data array of the BOOM only supports reading one

word per cycle, therefore taking multiple cycles to retrieve

all the data of a cache line. We modified the data array by

widening the output to one full cache line.We then connected

the outputs to the entire cache line indexed, instead of only

connecting the output to the word retrieved by the offset

into the cache line. Thus, we have optimized the data array

to serve an entire cache line in a single cycle.

root_release_ackroot_release

root_release_datafill_buffer

meta_write

invalid
!is_hit ||
(is_clean && !is_dirty)

release_fired

is_hit &&
(is_flush || is_dirty)

release_fired

data_ready
is_dirty

ack_received

!is_dirty

Figure 7. The Flush MSHR operates via the following

state machine. It begins in the invalid state and ends in

root_release_ack.

For CBO.FLUSH, the metadata must always be invalidated

while for CBO.CLEAN, only the dirty bit is unset if the re-

quested cache line is dirty. Otherwise, the metadata is un-

changed. For both CBO.CLEAN and CBO.FLUSH, if the requested
line is dirty, the data buffer must be filled with the dirty data.

In all cases, the FSHR must send a RootRelease to L2 and

waits for a RootReleaseAck. Each FSHR operates based on

the state machine depicted in Figure 7 that implements the

aforementioned behavior.

The states are as follows:

1. invalid: Requests are ready to be accepted. On suc-

cessful reception of a request, an execution plan is set

up based on whether the address hit, the cache line is

dirty, and if the request is a clean or a flush.

2. meta_write: The metadata of the requested line is

modified. In case of a flush, the metadata is invalidated,

while in case of a clean, the dirty bit is unset.

3. fill_buffer: The data buffer is filled by retrieving the

correct line from the data array of the L1 data cache.

As mentioned earlier, the data array takes only one

cycle to fill the whole buffer.

4. root_release_data: A RootRelease message is sent

with data over TL-C to the higher level cache to write

back data to main memory. Because the SonicBOOM’s

system bus is 16B (Figure 3), it takes four cycles to

send the data to L2.

5. root_release: A RootRelease message is sent without

data over TL-C. As no data is written back, the message

is sent in one cycle.

6. root_release_ack: The FSHR waits until it receives a

RootReleaseAck over TL-D. Once the acknowledgement

is received, the FSHR transitions back to the invalid
state.

We summarize the potential paths shown in Figure 7 from

the invalid state to the root_release_ack state. A CBO.X
to a dirty cacheline must modify (invalidate or downgrade)

the cacheline’s permissions. However, in case of a hit on

a clean cacheline, its permissions must be modified (invali-

dated) only in case of a CBO.FLUSH. In case of a cache miss,

no action is required. Finally, the appropriate RootRelease is
sent to the higher level cache. We highlight that in case of

a cache miss, RootRelease is sent regardless as the cacheline
7

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

may still need to be written back from other cores, or from

higher levels of the cache hierarchy.

Flush Counter. The flush counter is used to track the

number of pending flush requests. It is incremented when a

flush request is enqueued and decremented when an FSHR

receives a RootReleaseAck.

5.3 Handling Data Cache Requests
CBO.X instructions are considered to be committed when

they are buffered by the flush unit’s queue. As subsequent in-

structions, including those dependent on the buffered CBO.X,
may be issued to the data cache, we must take special care

to ensure correctness. For this reason, the flush unit is de-

signed to be probed to check whether the addresses are either

pending in the flush queue or being handled by an allocated

FSHR.

Loads. Loads (or broadly LDQ requests) can proceed if

the request hits in the L1 cache. Because a load hit does not

change the state of any cache line, the metadata of requests

in the flush queue remain valid, and the request may be

served. However, if the LDQ request misses but there exists

an FSHR with a filled data buffer handling the same line, this

data is forwarded directly to the load, and the load succeeds.

If the load misses and an FSHR is handling the same line

without a filled data buffer, then the load must be postponed

(nacked) until either the data buffer is filled or that FSHR

completes serving its request. This is essential because the

metadata of requests in the flush queue must not be modified

by the same core.

Stores. If a store is dependent on a request, either pending

in the flush queue or being handled by an FSHR, the store will

be nacked unless it satisfies all the following three conditions.

First, there must be an allocated FSHR for the requested line.

Second, the FSHR must be executing a CBO.CLEAN request.
Finally, the cache line must not be dirty or, if it is dirty,

the FSHR must have filled its data buffer. Upon satisfying

these conditions, the store instruction is allowed to proceed

without waiting for the write back to complete.

As cache line permissions remain unchanged due to a

CBO.CLEAN, subsequent stores may proceed without an ac-

knowledgment of the CBO.CLEAN request. Nevertheless, by
ensuring that the data buffer is filled before proceeding with

subsequent stores, we guarantee that the data of subsequent

stores are not written back by the CBO.CLEAN instruction.

Dependent CBO.X instructions are allowed to coalesce with a

corresponding pending flush request if and only if the cache

line state remains unchanged between the two CBO.X instruc-
tions. For example, a CBO.CLEAN may coalesce with a pend-

ing CBO.CLEAN but not with a pending CBO.FLUSH. However,
CBO.X requests of the same kind may not be merged together

if they operate on different cache lines. When a subsequent

CBO.X satisfies the conditions for coalescence, it is marked

probe_rdy

wb_invalidate
wb_rdy

probe_invalidate

TL-D TL-A TL-E

TL-BTL-C

Data & Metadata
SRAM Arrays

Probe
Unit

Writeback
Unit

8 MSHRs

16 B/cycle

64 B/cycle

RootRelease/RootWB

flush_rdy

signal

Flush
Unit

flushing

Figure 8. The modified SonicBOOM L1 data cache with

the addition of the Flush Unit contains all of the previously

described signals (denoted by dashed lines) in addition to

new signals and data buses.

as committed and is dropped. This improves performance by

optimizing away redundant writeback instructions in hard-

ware. Coalescence of different types of CBO.X requests, such

as a CBO.CLEANwith a CBO.FLUSH is a potential optimization

for future investigation.

All other dependent STQ requests must nack the LSU. This

is done to prevent the data of subsequent stores from being

written back by previous writeback instructions.

Fences. Fences are adapted to also ensure completion of all

pending flush requests before committing. This is achieved

using the flush counter. The flushing signal in Figure 6 is set

when the flush counter is non-zero, implying that if flushing
is low, there are no pending flush requests in the queue or in

FSHRs. We permit fences to commit only if flushing is low.

5.4 Writeback Interference
When an FSHR is allocated and a request is dequeued, an ar-

bitrary amount of time has passed since the time of enqueue,

thus the request metadata is not guaranteed to be valid. The

request metadata may have been modified as a result of the

following actions:

1. Out-of-order execution of dependent memory opera-

tions.

2. Probes to the address by other cores.

3. Cache line eviction by the MSHRs.

As presented in detail in § 5.3, action 1 is prevented since

operations dependent on queued flush requests are blocked.

Actions 2 and 3 are discussed in § 5.4.1 and § 5.4.2.

5.4.1 Cross-Core Interference. Cache coherence probes
that revoke line permissions may cause entries in the flush

queue to become invalid. Consider the case in which a flush

request is enqueued into CPU1 with hit and dirty bits set. If

CPU2 requests permissions to this line from the L2 cache,

CPU1 is probed and must revoke its permissions. If the probe

happens before the flush request is dequeued and allocated

8

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

to an FSHR, it leads to undefined behavior. We avoid this

by augmenting the probe unit and the flush queue to allow

invalidation of pending entries in the flush queue. On han-

dling a probe request from a higher level caching agent, the

probe unit signals the flush unit via the probe_invalidate in-
put (Figure 6) to reset the dirty and/or hit bits based on the

permissions downgrade level. As a result, this flush request

is handled correctly with updated and valid metadata upon

dequeue.

However, this does not address the case in which a line is

probed while simultaneously being handled by an allocated

FSHR. This situation is resolved via flush_rdy. Upon FSHR

allocation, flush_rdy is unset until the FSHR reaches the state

root_release_ack. The signal remains unset until the FSHR

completes writing any metadata and releasing the line to L2,

but before receiving the acknowledgment. The probe unit

is blocked from handling the probe if flush_rdy is not high,

ensuring that probes cannot preempt an allocated FSHR.

Finally, consider the corner case of a probe event arriving

and being handled initially without any conflicting FSHRs.

Then, a flush request to the same line is dequeued before the

probe unit is able to invalidate this request in the queue. This

scenario is rendered impossible by the use of probe_rdy. As
soon as a probe event arrives, and before the probe unit in-

validates conflicting entries in the flush queue, the probe_rdy
signal is held low. The flush unit is only permitted to de-

queue a flush request and allocate an FSHR when probe_rdy
is high. It is possible for probe_rdy and flush_rdy to be low-

ered simultaneously if a probe request arrives and a flush

queue request is dequeued at the same time. However, the

probe unit checks for flush_rdy only one cycle after lowering

probe_rdy. Thus, the flush queue request that was dequeued

at the same time as the probe arrived, completes first and

raises flush_rdy. As probe_rdy remains high, no other request

can be dequeued from the flush queue in the meantime, and

the probe can continue, guaranteeing deadlock freedom in

our design.

5.4.2 Cache Line Eviction. Owing to the out-of-order

nature of the SonicBOOM, validity of request metadata in

the flush queue may be voided by cache lines being evicted to

accommodate other cache lines retrieved from higher level

caches. Cache line evictions release lines to the higher level

cache via the writeback unit (§ 3.3). Similar to the case of

probes in § 5.4.1, we augment the writeback unit to invalidate

requests corresponding to lines that are evicted. flush_rdy
is used again to block the MSHRs from choosing a cache

line to evict. wb_rdy in the writeback unit, used to block

probes, is reused to also block flush queue requests from

being dequeued. As the synchronization using flush_rdy and

wb_rdy is identical to that of probe_rdy, we delegate the

discussion of deadlock freedom to § 5.4.1.

5.5 L2 Cache
Wemodified the SiFive inclusive cache to add support for han-

dling RootReleasemessages. As described in § 5.1, RootRelease
is encoded as ProbeAck. Figure 4 demonstrates the pathways

of such a ProbeAck message in the L2.

The ProbeAck request is allocated to an MSHR in L2 imme-

diately upon arrival or later if buffered into the ListBuffer due
to a lack of MSHRs or conflicting MSHRs. If it contains dirty

data, it is simultaneously written back to the BankedStore.
Once an MSHR is allocated to handle the request, the di-

rectory is probed to get the cacheline’s dirty bit, and all the

lower level agents (L1 caches) that possess permissions to

this cacheline. First, the MSHR determines the probing strat-

egy. In case of a RootReleaseFlush, the MSHR first recursively

probes other owners of the line and revokes their permis-

sions. For a RootReleaseClean, probing is performed only if

an agent possesses the line with write permissions and the

owner (more than one owner may not posses write permis-

sions) is not the agent that requested the RootReleaseClean.
The MSHR instructs lower level caches to revoke/downgrade

permissions on their copies of the cacheline via TL-B mes-

sages as discussed in § 2.2. We highlight that probing and

cacheline revocation are performed if necessary even in case

the core that sent the RootRelease did not possess the cache-

line. This is important for correctness as the cacheline must

be written back to DRAM irrespective of the permissions on

the line held by the requesting core.

Upon receiving acknowledgements for the probes, any

dirty data obtained is written back to the BankedStore. Fi-
nally, if the cacheline is dirty (or has been dirtied by the

acknowledgements to the probes), the dirty data is released

and written back to DRAM via the SourceC module using the

Release TL-C message described in § 2.2. Thus, the last level

cache already catches and eliminates unnecessarywritebacks

by trivially checking its dirty bit.

Upon a successful acknowledgment of the Release from
main memory, the MSHR acknowledges the completion of

the writeback by sending a RootReleaseAck (encoded as Re-
leaseAck) to the original requester via the SourceD module.

6 Skip It
A cache line that has no dirty data in all levels of the cache

hierarchy is said to be persisted to main memory. As writing

back a persisted cache line does not change the line’s state in

main memory, this operation can be safely skipped, prevent-

ing unnecessary overhead while maintaining correctness.

In this section, we outline the architectural details of Skip

It, a hardware optimization that reduces costly redundant

writeback operations in the same manner as the software

mechanisms FliT [73] and link-and-persist [23].

Unfortunately, the dirty bit and valid bit of the L1 alone

are not sufficient to identify unnecessary writebacks. This is

because a cache line may or may not be dirty in L2, even if

9

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

the dirty bit in the L1 cache is unset. Consider the following

two scenarios:

• A cache line is not dirty in the L1 cache, but the same

cache line is dirty in the L2 cache.

• A cache line is not dirty in the L1 cache, and the same

cache line is not dirty in the L2 cache.

For Scenario 1, the write-back instruction must be issued

because dirty data exists in some level of the cache hierarchy.

However, in Scenario 2, we may safely skip the writeback

because the cache line has no dirty data in any level of the

cache. But, it is impossible to distinguish between these two

scenarios with just the L1 cache’s dirty and valid bits, and

so we require another bit.

Therefore, to track the persistence status of a cache line,

we add the skip bit to the metadata of each line in L1. As

persisted cache lines do not need to be written back, we skip

writebacks to cache lines whose skip bits are set. Lines with

an unset skip bit must be written back. Proof of our assertion

that the skip bit, when valid, is equivalent to the negation of

L2’s dirty bit is presented in § 6.2. We also introduce a new

TL-D message called GrantDataDirty, sent as a response

to AcquireBlock. GrantDataDirty is functionally identical

to GrantData, except that reception of a GrantDataDirty
indicates that the cache line is not persisted, whileGrantData
indicates it is. Therefore, an agent must unset the skip bit on

reception of GrantDataDirty, while GrantData signals the

agent to set the skip bit.

6.1 Implementation
Writeback requests in the flush unit now include a skip_bit
flag. The metadata array in Figure 3 is modified to store the

skip bit for each cache line. This bit, combined with the dirty

bit, indicates whether data in the L1 cache exists in main

memory. If the writeback request hits the cache, is not dirty,

and the skip bit is set, the writeback request is dropped and

not enqueued into the flush queue. The data cache signals

success to the LSU and the instruction is committed.

When the data cache’s MSHR receives a response to Ac-
quire, it unsets the skip bit of that block if the response is

GrantDataDirty, and sets it otherwise. The L2 cache, upon

responding to Acquire, selects between GrantData or Grant-
DataDirty depending on whether the block in L2 is dirty.

6.2 Correctness
We say the skip bit in L1 is valid if the cache line is valid and

the dirty bit is unset. We claim that when the skip bit of a

line in L1 is valid, the skip bit is equivalent to the negation

of the dirty bit of that line in L2.

Let us consider all the possibles states of a cache line:

1. Invalid: The cache line is invalid in L1, therefore the

skip bit is also invalid as it is impossible to know the

status of the cache line in L2.

2. Write Permissions: The L1 has exclusive write per-
missions to the cache line and we know that no other

L1 cache contains a copy of the line. If the dirty bit of

the line is set, the skip bit is treated as invalid because

we must writeback dirty data. However, if the dirty bit

is unset, then we writeback based on the skip bit. Since

only one L1 can have the data exclusively with write

permissions, if the skip bit is unset, and a writeback

is executed, it will not be able to skip it as the dirty

data does not exist in main memory yet. Nonetheless,

if the skip bit is set, no other cache line has modified

the line, and therefore, it is safe to skip it.

3. Read Permissions: The L1 has read permissions to

the cache line; this may be shared with other L1 caches

or may be exclusive. Since shared or exclusive read

permissions cannot pollute the data, the skip bit state

remains unchanged. Therefore, if a skip bit is (in)valid,

it remains unchanged since it is impossible for any

other agent to update the line in the meantime. How-

ever, when the line is shared in multiple caches with

unset skip bits, and they all perform non-invalidating

writebacks (CBO.CLEAN), the skip bit may not be up-

dated in time, allowing some redundant writebacks.

While some non essential writebacks go through in

this specific case, correctness is not violated.

Therefore, as all possible cases have been verified, we

conclude that Skip It does not produce undefined or illegal

behavior and is functionally correct.

7 Evaluation
To evaluate the clean and flush capabilities we examine sev-

eral scenarios. § 7.2 evaluates SonicBOOM CBO.X perfor-

mance across thread count and writeback sizes. § 7.3 com-

pares clean and flush to commercial x86 and ARM CPUs. We

demonstrate the effectiveness of Skip It in § 7.4 and compare

its performance to state-of-the-art software solutions.

7.1 Experimental Platform
We develop our mechanisms extending the latest version of

the SonicBOOM
1
and L2 cache

2
provided in Chipyard.

For experiments in § 7.2 and § 7.3, we synthesize a dual

core SonicBOOM running at 30 MHz using FireSim [39]
3
.

Each core has a 32 KiB L1 cache and share a 512 KiB inclu-

sive L2 cache. FireSim performs an FPGA-accelerated RTL

simulation with FASED [10], a realistic FPGA-hosted DRAM

model. The SonicBOOM is running Buildroot GNU/Linux

(kernel v6.2) generated using FireMarshal [57].

Due to the more intensive nature of the evaluations in

§ 7.4, we slightly modify the experimental setup. The SoC re-

mains unchanged but we use FPGA synthesis on Enzian [18].

1
BOOM commit hash: deae9f7

2
L2 commit hash: 850e121

3
FireSim commit hash: df095fb

10

https://github.com/riscv-boom/riscv-boom/tree/deae9f70469336a3787fa7fcc10135ffb93d21d9
https://github.com/ucb-bar/block-inclusivecache-sifive/tree/850e12154c1de6baee9e40094d115e9b85d799b1
https://github.com/firesim/firesim/tree/df095fb4b8c93a0a922e4cd389ee90ed91e5fc65

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 9. CBO.X performance scales as expectedwith increas-

ing data size. Additional threads provide close to theoretical

improvement (e.g. 8 threads writeback 7.2× faster).

Without the complexity added by FASED, our dual core Son-

icBOOM runs at 50 MHz. Since the comparisons are exclu-

sively between SonicBOOM with and without Skip It, accu-

rate memory simulations are less critical. Cycle counts are

obtained using the RDCYCLE [26] control status register [25].

We repeat all microbenchmarks 50 times and report the me-

dian latency of the experiments. All other evaluations are

performed for 2s and averaged over 5 repetitions.

7.2 SonicBOOM Performance
To characterize the CBO.X performance, we writeback vari-

ous amounts of data, from one cache line (64 B) to the entire

L1 cache (32 KiB) using one, two, four, and eight threads.

Figure 9 shows the latency for non-contended lines i.e. each

thread flushes a different cache region. We dirty the cache,

then each thread flushes sequentially and fences once at the

end. A single thread can clean or flush one cache line with a

median latency of 100 cycles (𝜎 : 13.2) while it takes 7460 cy-

cles (𝜎 : 286.1) to flush all 32 KiB. Additional threads reduce

overall latency, especially for larger writebacks: 8 threads

show a 7.2× improvement in latency over a single thread.

The CBO.CLEAN and CBO.FLUSH performance is equiva-

lent in isolation because the mechanism is identical in this

case. To compare the difference between them, we perform

another microbenchmark that writes to a cache line, issues a

clean or flush followed by a fence, and then re-reads the value

once the synchronous barrier is passed. Figure 10 shows this

benchmark for one and eight threads. The behaviors remain

similar across thread count. By simply cleaning and not in-

validating data (thus not having to re-fetch) allows ≈ 2×
lower latency.

Figure 10.We see the value of a cleaning (non-invalidating)

writeback. Reading after CBO.CLEAN, we achieve ≈ 2×
lower latency due to the cache hit versus refetching from

memory due to CBO.FLUSH. Note latency is log scale.

7.3 Comparative Performance
We compare our implementation in the SonicBOOM to com-

mercial x86 and ARM CPUs. These experiments are con-

ducted with two modern x86 CPUs, an AMD EPYC 7763 [1]

and Intel Xeon Gold 6238T [34], as well as an AWS Gravi-

ton3 [3] ARMv8 processor (C7g.metal [2]). For x86 CPUs

we use both standard clflush and optimized clflushopt
(flush) and clwb (clean). ARMv8 uses dccivac (flush) and

dccvac (clean). After flushing we include the appropriate

memory barrier. Both x86 systems run Ubuntu 20.04 (kernel

5.4.0-153) while the Graviton3 runs Amazon Linux 2. Note

that the SonicBOOM has only two levels of cache (L1 and L2),

while the commercial CPUs have L3. We do not believe that

this significantly changes the relative performance given

that memory latency dominates.

Figures 11 and 12 show the comparative performance for

one and eight threads. In both scenarios, the Intel clflush
takes an extremely long time for larger data due to its in-

herent use of barriers, while Intel’s optimized flush is often

the best performing x86 implementation. On the other hand,

AMD’s clflush and clflushopt perform nearly identically.

The SonicBOOM CBO.FLUSH outperforms x86 processors for

nearly all sizes with both one- and eight-threads, but Gravi-

ton’s flush latency grows sub-linearly, making flushes greater

than 4 KiB faster. In all cases, CBO.X are competitive with

the commercial implementations.

The gap between Intel’s clflush and other flushing in-

structions is not as large using 8 threads. Again, noting the

aforementioned caveats about comparing SonicBOOM and

11

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

Figure 11.Writeback latencies for a single thread are similar

across architectures, with the exception of the Intel clflush
which is significantly worse at 4 KiB and above.

Figure 12. Writeback latencies for eight threads are compa-

rable across architectures, with Intel clflush only showing

its poor performance above 16 KiB in this case.

commercial CPUs, our implementation outperforms other

platforms when using eight threads across nearly all write-

back sizes. We recognize the significant additional complex-

ity in commercial CPUs compared to the SonicBOOM core,

and we want to be clear that these experiments do not imply

that the presented implementation is per se better. There are
many subtleties across architectures, vendors, and implemen-

tations and a thorough study of behavior and performance

Figure 13. Comparing naïve and Skip It for 10 consecutive

flushes, using 1 and 8 threads, Skip It shows 15-20% speedup.

is beyond the scope of this paper. However, we believe the

design is a sound implementation and correct. Moreover,

having a well performing, comparable set of instructions

allows for further experimentation of hardware caching op-

timizations as we discussed in § 6 and evaluate in § 7.4.

7.4 Skip It
In this section we evaluate the performance of Skip It using a

microbenchmark and compare it to state-of-the-art software

optimizations for redundant writebacks.

Microbenchmark. To compare Skip It to naïve write-

backs, we restrict our comparison to CBO.FLUSH as the re-

sults are identical for CBO.CLEAN. In the benchmark, for each

cache line, we execute a store followed by a CBO.FLUSH and

then 10 redundant CBO.FLUSH instructions to the same cache

line. As with § 7.3, we evaluated it across 1, 2, 4 and 8 threads.

We observe in Figure 13 that Skip It performs up to 30%

better than the naïve version. The L2 cache (as LLC) already

supports trivially skipping redundant writebacks by check-

ing its dirty bit. Thus, in the SonicBOOM, Skip It saves the

latency incurred by queuing and dequeuing the flush request,

allocating an FSHR, communicating with L2 and waiting for

a response from L2. It also reduces contention for the L2

cache. A deeper cache hierarchy (i.e. L3 or L4) could show

greater improvements due to the increased latencies.

FliT [73]. We compare Skip It to existing software-based

optimizations of redundant writebacks. We use CBO.FLUSH
to writeback cachelines to maximize the penalty of not iden-

tifying a redundant writeback. We evaluate these methods

on persistent lock-free versions of four data structures: a

binary search tree [53], a hash table [23], a linked list [31]

12

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 14. Throughput of varying persistent algorithms across data structures and flush optimizations, with 5% updates.

Figure 15. Throughput of varying update percentage across data structures and redundant flush optimizations.

and a skiplist [23]. We evaluate three different algorithms

for maintaining persistence: the first being the automatic
version where a writeback and a fence must be executed

after every operation [36, 73], secondly the NVTraverse
framework [27] and finally a manual algorithm [23].

For each scenario, we evaluate four methods to avoid re-

dundant flushes: FliT adjacent and FliT hash table [73],
Link-and-Persist [23, 29, 71, 81], and Skip It. FliT adja-

cent places a counter for reducing redundant flushes next

to every variable. FliT hash table locates these counters in

a separate hash map. Link-and-persist has a bit within ev-

ery cacheline to indicate whether a specific cacheline has

been written to peristent memory. Skip It is a combination of

these methods, since it has a bit in the cacheline metadata to
reduce redundant flushes. We additionally compare with the

baseline plain, which provides no mechanisms to prevent re-

dundant writebacks. All benchmarks were instantiated with

2 threads. Each update is randomly an insertion or a deletion

with equal probability.

Figures 14 and 15 summarize the results of the experi-

ments. The horizontal dark green dotted line indicates the

throughput of the baseline non-persistent version. We ob-

serve that Skip It almost always outperforms FliT adjacent

and FliT hash table. This is due to the extra memory that

FliT consumes and the fact that Skip It implements a similar

mechanism in hardware, which reduces its lookup time. It

checks the cacheline’s metadata, which is separated from

the cacheline itself in a similar way as FliT. As Skip It is

a hardware optimization invisible to programmers, it does

not require any extra memory in the form of book-keeping

data structures, substantially reducing cache contention and

memory accesses. Skip It mostly performs comparatively

or better than Link-and-Persist, except for the cases of au-

tomatic linked list and hash table. Link-and-Persist stores

its bit in the 63rd bit of the data word. The data word is

read anyway, so testing this bit in software and subsequently

cancelling the issue of a writeback instruction may be more

efficient to catch and terminate redundant writebacks. While

Skip It only requires a single bit for a cacheline in L1, the

writeback instruction must travel through the pipeline (in-

cluding TLB misses and page table walks) to the L1 cache

before it is detected as redundant and halted. However, we

note that as Link-and-Persist occupies an unused bit of the

address, it is not applicable for algorithms that make use of

unused bits for their logic (such as the BST), and additionally

all accesses to this address must first mask this occupied

bit before it performs a memory operation. FliT and Skip

It do not suffer from these restrictions. We observe that in

Figure 14 (d), the baseline is actually lower than the most

performant algorithms. Using a CBO.FLUSH to invalidate and
writeback a cacheline may provide better performance due

13

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

Figure 16. BST (10k keys) throughput is sensitive to FliT

hashtable size.

to the memory constraints of our system. As cache line re-

placement constantly happens in both L1 and L2, manually

freeing cache lines via flushes may offer better throughput

by preempting cache replacement mechanisms.

The limited cache size of the SonicBOOM is the primary

reason for the lower performance of FliT in comparison to

others. The combined cache size of the Xeon CPU used in

[73] to evaluate FliT is 35.75 MiB, while our SonicBOOM

has 544 KiB. As FliT requires auxiliary data structures, a

∼ 67× smaller cache impacts performance significantly due

to constant cache contention between the evaluated data

structures and FliT’s metadata. This is especially apparent

in the FliT hash table size, illustrated in Figure 16.

8 Related Work
There has been much research focused on building correct

and efficient libraries for non-volatile main memory in which

flush and fence are compulsory [70, 32, 45, 61, 22, 50, 35, 41,

27, 28, 21, 81, 74]. To avoid software-initiated writebacks,

others proposed new hardware designs for NVMM. From

extensive analysis of persistent memory patterns, Hands Off

Persistence System (HOPS) [52] aims to improve persistent

systems’ efficiency by automatically tracking instruction

dependencies. Nalli et al. propose hardware modifications

(e.g. per-thread persist buffers and ISA extensions), simulated

in gem5. While HOPS offers whole system persistence, this

comes at the cost of significant hardware complexity.

Another line of research focuses on removing writeback

instructions from the critical path [38, 19]. Joshi et al. [38]
tracks inter- and intra-thread conflicts and postpones the

persistent instructions to a later point in time, resulting in

buffered-epoch or buffered-strict persistency models [56].

They introduce multiple hardware modifications and is sim-

ulated on gem5. This work is complementary to ours.

Hardware Logging (HWL) detects transactions and auto-

matically logs all changed values, tasking the memory con-

troller with eviction of modified log entries to NVMM [54]

negating explicit writebacks and fences. Bhardwaj et al. [9]

implemented a way for automatically logging to persistent

memory using FPGAs. Braun et al. [13] also utilize FPGAs

to build a persistence layer, PLayer, exploiting the cache-

coherence protocol in hardware to guarantee persistence for

lock-free data structures with the existence of NVMM or

CXL. To support NVMM encryption, a proposed hardware

extension to Asynchronous DRAM Refresh (ADR) allows for

the atomic persistence of data and associated counters using

writebacks efficiently [46].

The vast majority of research done on NVMM has been

conducted using Intel Optane due to the provided hardware

and toolchains [30]. This limits the ability of researchers to

conduct exploratory research into mechanisms and architec-

tures to use novel future memory systems. Little work with

NVMM on RISC-V has been done [11] which we argue is due,

in part, to the lack of architectural support for the fundamen-

tal requirements for correctness (i.e. writeback instructions).

Other than support for NVMM, flush instructions are often

used for security. The majority of these solutions flush mi-

croarchitectural components up to the L1 [75, 12, 44, 43]

and most rely on cache coloring [40] to partition L2. Since

most are implemented on in-order RISC-V CPUs, our flush

instructions can allow for the implementation of these and

other techniques on BOOM.

9 Conclusion
In this paper, we describe the design and implementation of

two versions of writeback operations for the RISC-V BOOM

core. Furthermore, we present Skip It, an optimization that

avoids redundant writebacks of clean data. Implementing it

on an open-source platform, a modern out-of-order RISC-

V CPU, allows for further exploration and research, using

and optimizing these fundamental instructions in both hard-

ware systems and applications
4
. Our evaluation shows that

it has comparable, and even preferable performance to com-

mercial platforms. Moreover, Skip It demonstrates the value

of hardware optimizations by performing better than most

state-of-the-art software implementations. We hope the sys-

tem enables further research into software and hardware

optimizations across a broad range of problems.

Acknowledgments
The authors would like to thank the ASPLOS 2024 review-

ers and our shepherd Scott Rixner for their guidance in im-

proving the paper. We’d also like to thank the ISCA 2022

reviewers for their helpful feedback on re-approaching this

project. En-Yu Jenp’s thesis on Rocket Chip [37] inspired

this work. Roberto Starc’s thesis [66] helped us boot Linux

on the cores. The authors would also like to thank Adam

Turowski and the Enzian team for their help in the hardware

implementation of the system.

4https://gitlab.inf.ethz.ch/project-openenzian/applications/risc-v

14

https://gitlab.inf.ethz.ch/project-openenzian/applications/risc-v

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

References
[1] Advanced Micro Devices. 2023. AMD EPYC 7763. https://www.amd

.com/en/product/10906.
[2] Amazon Web Services. 2023. Amazon EC2 C7g Instances. https://aw

s.amazon.com/ec2/instance-types/c7g/.
[3] Amazon Web Services. 2023. Amazon Graviton Processor. https://a

ws.amazon.com/ec2/graviton/.
[4] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb,

Sagar Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Al-

bert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright,

Jerry Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić.

2020. Chipyard: integrated design, simulation, and implementation

framework for custom SoCs. IEEE Micro, 40, 4, 10–21. doi: 10.1109
/MM.2020.2996616.

[5] ARM. 2018. ARM architecture reference manual ARMv8. https://sta
tic.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf.

[6] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,

David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt,

John Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Dong-

gyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert

Magyar, HowardMao, Miquel Moreto, Albert Ou, David A. Patterson,

Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew

Waterman. 2016. The Rocket Chip Generator. Tech. rep. UCB/EECS-

2016-17. EECS Department, University of California, Berkeley, (Apr.

2016). http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2
016-17.html.

[7] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.

2012. Chisel: constructing hardware in a scala embedded language.

In DAC Design Automation Conference 2012, 1212–1221. doi: 10.1145
/2228360.2228584.

[8] Katelin Bailey, Luis Ceze, Steven D. Gribble, and HenryM. Levy. 2011.

Operating system implications of fast, cheap, non-volatile memory.

In Proceedings of the 13th USENIX Conference on Hot Topics in Oper-
ating Systems (HotOS’13). USENIX Association, Napa, California, 2.

https://www.usenix.org/legacy/events/hotos11/tech/final_files/Ba
iley.pdf.

[9] Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann,

Gerd Zellweger, and Ryan Stutsman. 2022. Cache-coherent acceler-

ators for persistent memory crash consistency. en. In Proceedings
of the 14th ACM Workshop on Hot Topics in Storage and File Systems.
ACM, Virtual Event, (June 2022), 37–44. isbn: 978-1-4503-9399-7. doi:

10.1145/3538643.3539752.
[10] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig,

Andrew Waterman, Jonathan Bachrach, and Krste Asanovic. 2019.

FASED: FPGA-accelerated simulation and evaluation of DRAM. In

Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’19). Association for Computing

Machinery, Seaside, CA, USA, 330–339. isbn: 9781450361378. doi:

10.1145/3289602.3293894.
[11] Mehrdad Biglari, Tobias Lieske, and Dietmar Fey. 2019. Reducing

hibernation energy and degradation in bipolar ReRAM-based non-

volatile processors. IEEE Transactions on Nanotechnology, 18, 657–
669. doi: 10.1109/TNANO.2019.2922363.

[12] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang,

Arvind, and Srinivas Devadas. 2019. MI6: secure enclaves in a spec-

ulative out-of-order processor. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO

’52), 42–56. https://doi.org/10.1145/3352460.3358310.
[13] Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo

Alonso. 2023. PLayer: expanding coherence protocol stack with a

persistence layer. In Proceedings of the 1st Workshop on Disruptive
Memory Systems (DIMES ’23). Association for ComputingMachinery,

Koblenz, Germany, 8–15. doi: 10.1145/3609308.3625270.

[14] Samira Briongos, Pedro Malagon, Jose M. Moya, and Thomas Eisen-

barth. 2020. RELOAD+REFRESH: abusing cache replacement policies

to perform stealthy cache attacks. In 29th USENIX Security Sympo-
sium (USENIX Security 20). USENIX Association, (Aug. 2020), 1967–

1984. isbn: 978-1-939133-17-5. https://www.usenix.org/conference/u
senixsecurity20/presentation/briongos.

[15] Christopher Celio, David A. Patterson, and Krste Asanović. 2015. The

Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive,

Synthesizable, Parameterized RISC-V Processor. Tech. rep. UCB/EECS-

2015-167. EECS Department, University of California, Berkeley, (June

2015). http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2
015-167.html.

[16] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo,

Dongqi Liu, Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, Chunqiang

Li, Yu Pu, JianyiMeng, Xiaolang Yan, YuanXie, andXiaoningQi. 2020.

Xuantie-910: a commercial multi-core 12-stage pipeline out-of-order

64-bit high performance RISC-V processor with vector extension

: industrial product. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), 52–64. doi: 10.1109
/ISCA45697.2020.00016.

[17] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in non-volatile

main memory. Proceedings of the VLDB Endowment, 8, 7, (Feb. 2015),
786–797. doi: 10.14778/2752939.2752947.

[18] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino,

Adam Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa

Licciardello, Kristina Martsenko, Reto Achermann, Gustavo Alonso,

and Timothy Roscoe. 2022. Enzian: an open, general, CPU/FPGA

platform for systems software research. In (ASPLOS ’22). Association

for Computing Machinery, Lausanne, Switzerland, 434–451. isbn:

9781450392051. doi: 10.1145/3503222.3507742.
[19] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin

Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better

i/o through byte-addressable, persistent memory. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP ’09). Association for Computing Machinery, Big Sky, Montana,

USA, 133–146. isbn: 9781605587523. doi: 10.1145/1629575.1629589.
[20] Henry Cook, Wesley Terpstra, and Yunsup Lee. 2017. Diplomatic

design patterns: a TileLink case study. In 1st Workshop on Computer
Architecture Research with RISC-V, 23. https://carrv.github.io/2017/p
apers/cook-diplomacy-carrv2017.pdf.

[21] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus:

efficient algorithms for persistent transactional memory. In Pro-
ceedings of the 30th on Symposium on Parallelism in Algorithms and
Architectures (SPAA ’18). Association for Computing Machinery, Vi-

enna, Austria, 271–282. isbn: 9781450357999. doi: 10.1145/3210377.3
210392.

[22] Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang,

Xian-He Sun, and Gang Chen. 2022. NVAlloc: rethinking heap meta-

data management in persistent memory allocators. In Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’22). Asso-
ciation for Computing Machinery, Lausanne, Switzerland, 115–127.

isbn: 9781450392051. doi: 10.1145/3503222.3507743.
[23] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor

Zablotchi. 2018. Log-Free concurrent data structures. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,

Boston, MA, (July 2018), 373–386. isbn: 978-1-939133-01-4. https://w
ww.usenix.org/conference/atc18/presentation/david.

[24] Enzian Team. 2023. RISC-V on Enzian Repository. https://gitlab.inf
.ethz.ch/project-openenzian/applications/risc-v.

[25] Five EmbedDev. 2023. Control and status register (csr) instructions.

https://five-embeddev.com/riscv-isa-manual/latest/csr.html.
[26] Five EmbedDev. 2023. Counters. https://five-embeddev.com/riscv-is

a-manual/latest/counters.html.

15

https://www.amd.com/en/product/10906
https://www.amd.com/en/product/10906
https://aws.amazon.com/ec2/instance-types/c7g/
https://aws.amazon.com/ec2/instance-types/c7g/
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf
https://doi.org/10.1145/3538643.3539752
https://doi.org/10.1145/3289602.3293894
https://doi.org/10.1109/TNANO.2019.2922363
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1145/3609308.3625270
https://www.usenix.org/conference/usenixsecurity20/presentation/briongos
https://www.usenix.org/conference/usenixsecurity20/presentation/briongos
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/1629575.1629589
https://carrv.github.io/2017/papers/cook-diplomacy-carrv2017.pdf
https://carrv.github.io/2017/papers/cook-diplomacy-carrv2017.pdf
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3503222.3507743
https://www.usenix.org/conference/atc18/presentation/david
https://www.usenix.org/conference/atc18/presentation/david
https://gitlab.inf.ethz.ch/project-openenzian/applications/risc-v
https://gitlab.inf.ethz.ch/project-openenzian/applications/risc-v
https://five-embeddev.com/riscv-isa-manual/latest/csr.html
https://five-embeddev.com/riscv-isa-manual/latest/counters.html
https://five-embeddev.com/riscv-isa-manual/latest/counters.html

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Shashank Anand, Michal Friedman, Michael Giardino, and Gustavo Alonso

[27] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch,

and Erez Petrank. 2020. NVTraverse: in NVRAM data structures, the

destination is more important than the journey. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2020). Association for Computing Machinery,

London, UK, 377–392. isbn: 9781450376136. doi: 10.1145/3385412.33
86031.

[28] Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror:

making lock-free data structures persistent. In (PLDI 2021). Associa-

tion for Computing Machinery, Virtual, Canada, 1218–1232. isbn:

9781450383912. doi: 10.1145/3453483.3454105.
[29] Rachid Guerraoui, Alex Kogan, Virendra J.Marathe, and Igor Zablotchi.

2020. Efficient multi-word compare and swap. CoRR, abs/2008.02527.
https://arxiv.org/abs/2008.02527 arXiv: 2008.02527.

[30] Jawad Haj-Yahya, Yanos Sazeides, Mohammed Alser, Efraim Rotem,

and Onur Mutlu. 2020. Techniques for reducing the connected-

standby energy consumption of mobile devices. In 2020 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 623–636. doi: 10.1109/HPCA47549.2020.00057.

[31] Timothy L. Harris. 2001. A pragmatic implementation of non-blocking

linked-lists. In (DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–

314. isbn: 3540426051.

[32] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-

ton, and Patrick Eugster. 2017. NVthreads: practical persistence for

multi-threaded applications. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys ’17). Association for Com-

puting Machinery, Belgrade, Serbia, 468–482. isbn: 9781450349383.

doi: 10.1145/3064176.3064204.
[33] Intel Corporation. 2022. Intel 64 and ia-32 architectures software

developer manuals. https://www.intel.com/content/www/us/en/dev
eloper/articles/technical/intel-sdm.html.

[34] Intel Corporation. 2023. Intel Xeon Gold 6238T processor ARK. http
s://ark.intel.com/content/www/us/en/ark/products/192439/intel-x
eon-gold-6238t-processor-30-25m-cache-1-90-ghz.html.

[35] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-

atomic persistent memory updates via JUSTDO logging. SIGARCH
Comput. Archit. News, 44, 2, (Mar. 2016), 427–442. doi: 10.1145/29800
24.2872410.

[36] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.

Linearizability of persistent memory objects under a full-system-

crash failure model. In Distributed Computing. Cyril Gavoille and
David Ilcinkas, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg,

(Sept. 2016), 313–327. isbn: 978-3-662-53426-7. doi: 10.1007/978-3-6
62-53426-7_23.

[37] En-Yu Jenp. 2022. Persistence infrastructure on RISC-V. Master The-

sis. (2022). doi: 10.3929/ethz-b-000641849.
[38] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015.

Efficient persist barriers for multicores. In Proceedings of the 48th
International Symposium on Microarchitecture (MICRO-48). Associ-

ation for Computing Machinery, Waikiki, Hawaii, 660–671. isbn:

9781450340342. doi: 10.1145/2830772.2830805.
[39] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,

Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro,

Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje

Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanovic. 2018.

FireSim: FPGA-accelerated cycle-exact scale-out system simulation

in the public cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 29–42. doi: 10.1109
/ISCA.2018.00014.

[40] R. E. Kessler and Mark D. Hill. 1992. Page placement algorithms

for large real-indexed caches. ACM Trans. Comput. Syst., 338–359.
https://doi.org/10.1145/138873.138876.

[41] R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu, Sumit Kumar

Monga, Hee Won Lee, Minsung Jang, Ajit Mathew, and Changwoo

Min. 2021. TIPS: making volatile index structures persistent with

DRAM-NVMM tiering. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, (July 2021), 773–787. isbn:

978-1-939133-23-6. https://www.usenix.org/conference/atc21/prese
ntation/krishnan.

[42] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,

Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-

chini. 2023. Pond: CXL-based memory pooling systems for cloud

platforms. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS 2023). Association for Computing Ma-

chinery, Vancouver, BC, Canada, 574–587. isbn: 9781450399166. doi:

10.1145/3575693.3578835.
[43] Tuo Li, Bradley Hopkins, and Sri Parameswaran. 2020. SIMF: single-

instruction multiple-flush mechanism for processor temporal isola-

tion. (2020). doi: 10.48550/ARXIV.2011.10249.
[44] Tuo Li and Sri Parameswaran. 2022. FaSe: fast selective flushing to

mitigate contention-based cache timing attacks. In Proceedings of the
59th ACM/IEEE Design Automation Conference (DAC ’22). Association

for Computing Machinery, San Francisco, California, 541–546. isbn:

9781450391429. doi: 10.1145/3489517.3530491.
[45] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei

Wu, and Jinglei Ren. 2017. DudeTM: building durable transactions

with decoupling for persistent memory. In 22nd ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, (Apr. 2017), 329–343. https://ww
w.microsoft.com/en-us/research/publication/dudetm-building-du
rable-transactions-decoupling-persistent-memory/.

[46] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018.

Crash consistency in encrypted non-volatile main memory systems.

In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 310–323. doi: 10.1109/HPCA.2018.00035.

[47] Daniel Lustig. 2022. A formalization of the RISC-V memory consis-

tency model. https://github.com/daniellustig/riscv-memory-model.
[48] Daniel Lustig. 2018. RISC-V memory model. https://www.youtube.c

om/watch?v=QkbWgCSAEoo.
[49] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,

Niket Agarwal, Pallab Bhattacharya, Chris Petersen,Mosharaf Chowd-

hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: transpar-

ent page placement for CXL-enabled tiered-memory. In Proceedings
of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (ASP-
LOS 2023). Association for Computing Machinery, Vancouver, BC,

Canada, 742–755. isbn: 9781450399180. doi: 10.1145/3582016.358206
3.

[50] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson.

2020. Pronto: easy and fast persistence for volatile data structures.

In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’20). Association for Computing Machinery, Lausanne,

Switzerland, 789–806. isbn: 9781450371025. doi: 10.1145/3373376.33
78456.

[51] Microsemi. 2020. PolarFire SoC FPGA icicle kit. https://www.micros
emi.com/existing-parts/parts/152514. (2020).

[52] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris

Volos, and Kimberly Keeton. 2017. An analysis of persistent memory

use withWHISPER. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’17). Association for Computing Ma-

chinery, Xi’an, China, 135–148. isbn: 9781450344654. doi: 10.1145/3
037697.3037730.

[53] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-

free binary search trees. In Proceedings of the 19th ACM SIGPLAN

16

https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3453483.3454105
https://arxiv.org/abs/2008.02527
https://arxiv.org/abs/2008.02527
https://doi.org/10.1109/HPCA47549.2020.00057
https://doi.org/10.1145/3064176.3064204
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://ark.intel.com/content/www/us/en/ark/products/192439/intel-xeon-gold-6238t-processor-30-25m-cache-1-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192439/intel-xeon-gold-6238t-processor-30-25m-cache-1-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192439/intel-xeon-gold-6238t-processor-30-25m-cache-1-90-ghz.html
https://doi.org/10.1145/2980024.2872410
https://doi.org/10.1145/2980024.2872410
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.3929/ethz-b-000641849
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/138873.138876
https://www.usenix.org/conference/atc21/presentation/krishnan
https://www.usenix.org/conference/atc21/presentation/krishnan
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.48550/ARXIV.2011.10249
https://doi.org/10.1145/3489517.3530491
https://www.microsoft.com/en-us/research/publication/dudetm-building-durable-transactions-decoupling-persistent-memory/
https://www.microsoft.com/en-us/research/publication/dudetm-building-durable-transactions-decoupling-persistent-memory/
https://www.microsoft.com/en-us/research/publication/dudetm-building-durable-transactions-decoupling-persistent-memory/
https://doi.org/10.1109/HPCA.2018.00035
https://github.com/daniellustig/riscv-memory-model
https://www.youtube.com/watch?v=QkbWgCSAEoo
https://www.youtube.com/watch?v=QkbWgCSAEoo
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3373376.3378456
https://doi.org/10.1145/3373376.3378456
https://www.microsemi.com/existing-parts/parts/152514
https://www.microsemi.com/existing-parts/parts/152514
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1145/3037697.3037730

Skip It: Take Control of Your Cache! ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Symposium on Principles and Practice of Parallel Programming (PPoPP
’14). Association for Computing Machinery, Orlando, Florida, USA,

317–328. isbn: 9781450326568. doi: 10.1145/2555243.2555256.
[54] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen Zhao. 2018.

Steal but no force: efficient hardware undo+redo logging for persis-

tent memory systems. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 336–349. doi: 10.1109
/HPCA.2018.00037.

[55] Mark S. Papamarcos and Janak H. Patel. 1984. A low-overhead coher-

ence solution for multiprocessors with private cache memories. In

Proceedings of the 11th Annual International Symposium on Computer
Architecture (ISCA ’84). Association for Computing Machinery, New

York, NY, USA, 348–354. isbn: 0818605383. doi: 10.1145/800015.8082
04.

[56] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory

persistency. In 2014 ACM/IEEE 41st International Symposium on Com-
puter Architecture (ISCA), 265–276. doi: 10.1109/ISCA.2014.6853222.

[57] Nathan Pemberton andAlonAmid. 2021. FireMarshal: makingHW/SW

co-design reproducible and reliable. In 2021 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
299–309. doi: 10.1109/ISPASS51385.2021.00052.

[58] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019.

Persistency semantics of the Intel-x86 architecture. Proc. ACM Pro-
gram. Lang., 4, POPL, Article 11, (Dec. 2019), 31 pages. doi: 10.1145
/3371079.

[59] Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak

persistency semantics from the ground up: formalising the persis-

tency semantics of ARMv8 and transactional models. Proc. ACM
Program. Lang., 3, OOPSLA, Article 135, (Oct. 2019), 27 pages. doi:
10.1145/3360561.

[60] RISC-V International. 2022. RISC-V Base Cache Management Opera-
tion ISA Extensions. https://github.com/riscv/riscv-CMOs/blob/mast
er/specifications/cmobase-v1.0.pdf.

[61] Jihye Seo, Wook-Hee Kim, Woongki Baek, Beomseok Nam, and Sam

H. Noh. 2017. Failure-atomic slotted paging for persistent memory.

In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’17). Association for Computing Machinery, Xi’an, China,

91–104. isbn: 9781450344654. doi: 10.1145/3037697.3037737.
[62] Debendra Das Sharma and Ishwar Agarwal. 2022. Compute Express

Link 3.0 Standard. Tech. rep. https://www.computeexpresslink.org
/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf.

[63] SiFive. 2020. HiFive unmatched. https://www.sifive.com/boards/hifi
ve-unmatched. (2020).

[64] SiFive. 2019. SiFive inclusive cache. https://github.com/sifive/block-
inclusivecache-sifive. (2019).

[65] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. 2012. Oper-
ating System Concepts. (9th ed.). Wiley Publishing. isbn: 1118063333.

[66] Roberto Starc. 2023. Exploring the Microarchitectural Implications
of Serverless Workloads Using RISC-V. Master Thesis. ETH Zurich,

Zurich. doi: 10.3929/ethz-b-000610314.
[67] Wesley W Terpstra. 2017. TileLink: a free and open-source, high-

performance scalable cache-coherent fabric designed for RISC-V. In

Proceedings of the 7th RISC-V Workshop. https://youtu.be/EVITxp-
SEp4.

[68] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Ger-

main Haugou, Eric Flamand, Frank K Gurkaynak, and Luca Benini.

2016. PULPino: a small single-core RISC-V SoC. In 3rd RISC-V Work-
shop. https://riscv.org/wp- content/uploads/2016/01/Wed1315-
PULP-riscv3_noanim.pdf.

[69] Ventana Micro Systems Inc. 2022. Veyron V1 product information.

https://www.ventanamicro.com/technology/risc-v-cpu-ip/. (2022).

[70] Haris Volos, Andres Jaan Tack, andMichaelM. Swift. 2011.Mnemosyne:

lightweight persistent memory. In Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). Association for

Computing Machinery, Newport Beach, California, USA, 91–104.

isbn: 9781450302661. doi: 10.1145/1950365.1950379.
[71] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy

lock-free indexing in non-volatile memory. In 2018 IEEE 34th In-
ternational Conference on Data Engineering (ICDE), 461–472. doi:
10.1109/ICDE.2018.00049.

[72] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste

Asanović. 2011. The RISC-V Instruction Set Manual, Volume I: Base

User-Level ISA. Tech. rep. UCB/EECS-2011-62. EECS Department,

University of California, Berkeley, (May 2011). https://github.com/ri
scv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv
-spec-20191213.pdf.

[73] Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blel-

loch, and Erez Petrank. 2022. FliT: a library for simple and efficient

persistent algorithms. In (PPoPP ’22). Association for Computing

Machinery, Seoul, Republic of Korea, 309–321. isbn: 9781450392044.

doi: 10.1145/3503221.3508436.
[74] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin

Valpey, andMichael L. Scott. 2021. A fast, general system for buffered

persistent data structures. In Proceedings of the 50th International
Conference on Parallel Processing (ICPP ’21) Article 73. Associa-

tion for Computing Machinery, Lemont, IL, USA, 11 pages. isbn:

9781450390682. doi: 10.1145/3472456.3472458.
[75] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak, Gernot Heiser,

and Luca Benini. 2023. Systematic prevention of on-core timing chan-

nels by full temporal partitioning. IEEE Transactions on Computers,
72, 05, (May 2023), 1420–1430. doi: 10.1109/TC.2022.3212636.

[76] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui

Gou, Yue Jin, Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu,

Zhigang Liu, Jiazhan Tan, Huaqiang Wang, Huizhe Wang, Kaifan

Wang, Chuanqi Zhang, Fawang Zhang, Linjuan Zhang, Zifei Zhang,

Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jiangrui Zou, Ye Cai,

Dandan Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei He, Qiyuan

Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, and Yungang

Bao. 2022. Towards developing high performance RISC-V proces-

sors using agile methodology. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 1178–1199. doi: 10.1109
/MICRO56248.2022.00080.

[77] F. Zaruba and L. Benini. 2019. The cost of application-class process-

ing: energy and performance analysis of a Linux-ready 1.7-GHz

64-bit RISC-V core in 22-nm FDSOI technology. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 27, 11, (Nov. 2019),
2629–2640. doi: 10.1109/TVLSI.2019.2926114.

[78] Florian Zaruba, Fabian Schuiki, and Luca Benini. 2020. Manticore: a

4096-core RISC-V chiplet architecture for ultraefficient floating-point

computing. IEEE Micro, 41, 2, 36–42. doi: 10.1109/MM.2020.3045564.
[79] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.

2020. SonicBOOM: the 3rd generation Berkeley out-of-ordermachine.

In Fourth Workshop on Computer Architecture Research with RISC-V.
(May 2020). https://carrv.github.io/2020/papers/CARRV2020_paper
_15_Zhao.pdf.

[80] Kan Zhong, Duo Liu, Liang, Xiao Zhu, Linbo Long, Yi Wang, and

Edwin Hsing-Mean Sha. 2016. Energy-efficient in-memory paging

for smartphones. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35, 10, (Oct. 2016), 1577–1590. doi:
10.1109/TCAD.2015.2512904.

[81] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez

Petrank. 2019. Efficient lock-free durable sets. Proc. ACM Program.
Lang., 3, OOPSLA, Article 128, (Oct. 2019), 26 pages. doi: 10.1145/33
60554.

17

https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1109/HPCA.2018.00037
https://doi.org/10.1109/HPCA.2018.00037
https://doi.org/10.1145/800015.808204
https://doi.org/10.1145/800015.808204
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1109/ISPASS51385.2021.00052
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://github.com/riscv/riscv-CMOs/blob/master/specifications/cmobase-v1.0.pdf
https://github.com/riscv/riscv-CMOs/blob/master/specifications/cmobase-v1.0.pdf
https://doi.org/10.1145/3037697.3037737
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.sifive.com/boards/hifive-unmatched
https://www.sifive.com/boards/hifive-unmatched
https://github.com/sifive/block-inclusivecache-sifive
https://github.com/sifive/block-inclusivecache-sifive
https://doi.org/10.3929/ethz-b-000610314
https://youtu.be/EVITxp-SEp4
https://youtu.be/EVITxp-SEp4
https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://www.ventanamicro.com/technology/risc-v-cpu-ip/
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1109/ICDE.2018.00049
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://doi.org/10.1145/3503221.3508436
https://doi.org/10.1145/3472456.3472458
https://doi.org/10.1109/TC.2022.3212636
https://doi.org/10.1109/MICRO56248.2022.00080
https://doi.org/10.1109/MICRO56248.2022.00080
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/MM.2020.3045564
https://carrv.github.io/2020/papers/CARRV2020_paper_15_Zhao.pdf
https://carrv.github.io/2020/papers/CARRV2020_paper_15_Zhao.pdf
https://doi.org/10.1109/TCAD.2015.2512904
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554

	Abstract
	1 Introduction
	2 Background
	2.1 RISC-V
	2.2 TileLink and Coherence Protocol
	2.3 Berkeley Out-of-Order Machine (BOOM)
	2.4 RISC-V Weak Memory Ordering
	2.5 Cache Management
	2.6 RISC-V Cache Control

	3 BOOM Architecture
	3.1 Reorder Buffer
	3.2 Load Store Unit
	3.3 L1 Data Cache
	3.4 Last Level Cache

	4 Memory Semantics
	5 Flush Microarchitecture
	5.1 Encoding
	5.2 Flush Unit
	5.3 Handling Data Cache Requests
	5.4 Writeback Interference
	5.5 L2 Cache

	6 Skip It
	6.1 Implementation
	6.2 Correctness

	7 Evaluation
	7.1 Experimental Platform
	7.2 SonicBOOM Performance
	7.3 Comparative Performance
	7.4 Skip It

	8 Related Work
	9 Conclusion

