
2QoSM: A Q-Learner QoS Manager for
Application-Guided Power-Aware Systems

Michael J. Giardino and Daniel Schwyn
Systems Group - Department of Computer Science

ETH Zürich
Zürich, Switzerland

{michael.giardino,daniel.schwyn}@inf.ethz.ch

Bonnie Ferri
School of Electrical Engineering
Georgia Institute of Technology

Atlanta, United States
bonnie.ferri@gatech.edu

Aldo Ferri
School of Mechanical Engineering

Georgia Institute of Technology
Atlanta, United States
al.ferri@me.gatech.edu

Abstract—This paper describes the design and performance
of Q-learning-based quality-of-service manager (2QoSM) for
compute-aware applications (CAAs) as part of platform-agnostic
resource management framework. CAAs and hardware are able
to share metrics of performance with the 2QoSM and the
2QoSM can attempt to reconfigure CAAs and hardware to meet
performance targets. This enables many co-design benefits while
allowing for policy and platform portability. The use of Q-
Learning allows online generation of the power management
policy without requiring details about system state or actions, and
can meet different goals including error, power minimization, or
a combination of both. 2QoSM, evaluated using an embedded
MCSoC controlling a mobile robot, reduces power compared to
the Linux on-demand governor by 38.7-42.6% and a situation-
aware governor by 4.0-10.2%. An error-minimization policy
obtained a reduction in path-following error of 4.6-8.9%.

I. INTRODUCTION

Whether dealing with battery-powered mobile robots or
data centers, computing devices remain power constrained.
These constraints manifest in thermal limits, battery capacity,
economic cost, or physical power delivery. What the term
power management entails depends on specific devices, but
fundamentally computer systems control power use by reduc-
ing the performance of devices in the system.

In the case of CPUs, this usually involves dynamic volt-
age and frequency scaling (DVFS) [1] and power gating
[2] whereas DRAM may use reduced refresh rates [3] and
hard drives may spin down [4]. These techniques reduce
performance, but if a device is underutilized or idle, the perfor-
mance reduction in exchange for power is sensible. From the
software’s perspective, real-time requirements, interactivity, or
boundedness (i.e. memory- vs compute-bound) can complicate
power management. Modern and emerging hardware such
as heterogeneous compute (e.g. big.LITTLE) and memory
(DRAM + NVM) and peripherals with large power budgets
(e.g. disks or coprocessors) further add complexity.

As discussed in Section II, there are many techniques of
software-controlled power management. In one extreme, you
have one-size-fits-all algorithms of general purpose operating
systems (e.g. Linux’s on-demand governor) which work well
across systems, but due to this generality, remain greatly sub-
optimal. At the other end, there is co-design, wherein policies
and applications are tailored to specific hardware and have

direct control of management. Co-design can provide strong
guarantees of correctness and near-optimal performance/power
consumption, but the tight coupling requires significant en-
gineering and eliminates cross-platform portability. With the
huge number of discrete platforms, especially among single-
board computers (SBCs) and systems-on-chips (SoCs), the
lack of portability is problematic.

An ideal system would allow interaction between appli-
cation and hardware but without the tight integration that
hurts portability. Our work demonstrates such a system by
allowing application state, performance, and guidance as well
as hardware state and control to be abstracted and managed
through a power controller. This controller need not understand
the specifics of state or controls, only that its actions result in
state changes, and to determine which decisions provide the
best outcomes from a given state. Moreover, by providing a
communications channel between application and hardware,
we no longer have to rely on basic CPU performance metrics,
but can instead use both quantitative and qualitative applica-
tion and whole-system performance. Application performance
metrics are especially important in physical systems (e.g.
mobile robots) because we are concerned with both the speed
of execution and the quality of execution. Since many of
these algorithms are non-deterministic, computational system
performance affects the quality of the solution.

The contributions presented in this paper are as follows:

• an abstraction of physical system performance (commu-
nication and path error), application state, and power
consumption into a unitless state vector

• a C-based Q-learner-based Quality-of-Service Manager
(2QoSM) that takes the state vector, and learns policies
for system power management based upon tunable reward
functions

• an evaluation of the 2QoSM on a MCSoC at the center of
a power-constrained mobile robot showing significant im-
provement over both standard Linux power management
and a state-of-the-art application-guided governor

• a demonstration of the utility of application, hardware,
and policy agnostic middleware for embedded power
management



II. RELATED WORK

The power consumed by computer system components vary
tremendously depending on the platform. Early PC power
consumption looked surprisingly different. A computer in the
mid-1990s might have nearly three quarters of its power
budget consumed by the monitor, 20% from the hard drive, and
less than a watt consumed by CPU and memory combined [4].
A modern CPU, by comparison, consumes much more power,
anywhere from less than 5 W for a laptop processor to 400
W for a server processor (5-800x) [5]. Memory in enterprise
and HPC systems can consume up to 40% of total power
budget [6]. For mobile devices, the energy consumed by the
OLED/LCD display may consume 50% [7] or more [8] while
embedded IoT devices expend the vast majority of their energy
budgets on networking [9]. Clearly, the power needs of these
different systems vary widely and require a closer examination
of their power management schemes.

One of the most important technological advances in com-
puter power management was dynamic voltage and frequency
scaling (DVFS). While CPU power consumption is determined
by many factors [10], voltage and frequency are the only run-
time controllable variables allowing for a simplification of
CPU power [1] as:

PCPU ∝ V 2 · f (1)

where the power consumed by the CPU PCPU is directly
proportional to the square of the voltage V times the clock
frequency f . Thus, runtime adjustment of these variables
is the dominant form of CPU power management. Many
modern CPUs have fine-grained on-die control of voltage and
frequency, however the vast majority of processors, especially
SoCs, rely on external software control for DVFS state man-
agement.

The most common method of software-controlled DVFS
(e.g. Linux on-demand governor [11]) is to set a target system
load, and adjust the P-States (discrete voltage/frequency pairs)
to reach it. More sophisticated strategies for controlling DVFS
include scheduling periodic workloads [12], integrated run-
time systems such as CPU MISER [13], CoScale [14], or
Intel’s RAPL system based upon energy quotas [15].

Modern processors can quickly power down regions of
the CPU (power-gating) allowing for an alternative power-
management paradigm: race-to-idle [16] or race-to-halt [17].
Instead of optimizing P-states, race-to-halt uses the highest
performance state to complete the work, and immediately
attempts to power down. DVFS states, especially when at-
tempting race-to-halt, rely on the assumption that tasks are
compute bound (versus memory bound). A computationally-
bound process is only limited by the number of CPU in-
structions retired and directly benefits from increasing CPU
frequency. However, if the process is memory bound, in-
creasing the CPU performance will use more power without
significantly speeding up execution [18]. Mixed workloads
are more of a challenge because they may benefit from a
combination of policies as the program changes execution

regions. An advantage to using a machine-learning is that if
the best paradigm for a given workload/system combination
is race-to-halt, the policy will converge to it, while still being
able to adjust for more memory-bound or mixed workloads.

The combination of increased computational performance
and energy consumption motivates the use of CPU cycles for
more efficient, predictive power management and scheduling.
These systems go by various names but we will refer to
them generally as “quality-of-service managers" (QoSM) to
include the broad spectrum of hardware and software targets,
constraints, and goals. Two closest related areas of modern
power management related to our work are QoSM middleware
and machine learning-based power managers.

The use of middleware, a software abstraction layer between
application and operating system, for power and performance
management is well-studied. Li et al. developed performance-
aware middleware for distributed video systems in an attempt
to balance the objectives of hardware and application [19].
Shortly after, ControlWare provided QoS management in dis-
tributed real-time systems that lies between hard and proba-
bilistic performance guarantees [20]. Hoffman et al. demon-
strate the need for coordination in optimizing for accuracy and
power and propose CoAdapt, a dynamic coordinated controller
for optimizing performance, accuracy and power [21]. We also
attempt to balance accuracy (error) and power consumption by
adjusting hardware and application algorithm but we diverge
in target application/hardware (embedded v. enterprise) and
choice of QoSM (feedback control v. machine learning).
POET, a C-based framework, minimizes energy consumption
while still meeting soft real-time constraints [22]. Imes et al.
expanded upon their work on POET to create Bard which
allows for runtime switching between power and performance
constraints [23]. POET/Bard are closely related both in their
framework architecture and the ODROID-XU3 experimental
platform. Our approach differs in that Bard requires a pre-
computed set of frequencies and associated speedups/power
usage whereas our learner simply has knobs to turn and metrics
to read. This benefits mixed or memory-intensive workloads
when a calculated speedup associated with a P-state is only a
best-case scenario for a compute-bound workload.

Given the demonstrated improvement of the application-
guided situation-aware governor over Linux’s on-demand gov-
ernor, we designed the 2QoSM described in this work as as a
drop-in replacement [24]. This work makes use of the existing
framework and experimental platform to demonstrate both the
ease of replacing the governor/QoSM, as well as the improve-
ments of Q-learning over a custom, context-aware governor.
Additional differentiation between the two implementations is
described in Section III.

The framing of power management as a machine learning
problem is discussed in more detail in Section III-B. However,
there is a spate of recent machine learning based power
managers, especially those using reinforcement learning to
determine the optimal power state of a CPU [25]. Mar-
tinez and Ipek [26] examine the ability of machine learning
to make low-level power management decisions including



DRAM scheduling and multiresource allocation. Ye and Xu
use Q-Learning to optimize idle periods to reduce power con-
sumption in simulations of synthetic benchmarks [27]. Their
Q-Learning-based quality-of-service manager (2QoSM) differs
in that their goal is to reduce transitions, while our 2QoSM
is only concerned with the measured power consumption. If
transitioning too often is increasing power use through leakage
current, this is reflected in power consumption and 2QoSM
can adjust the policy accordingly. Shen et al. [28] use a Q-
Learner to pick DVFS states by constraining the performance
and temperature while minimizing the total energy. Similarly,
Ge et al. use CPU metrics, user-constraints, and processor
temperature for determining state and reward [29]. Many of the
design decisions they made are similar to the ones made in this
paper, but our work has some notable differences. The most
important difference is that our reward and state are not based
upon CPU utilization (i.e. IPS and CPU intensiveness) but
instead the measured performance of the application, which
is a more represenatitive metric of total system performance
than CPU load. Additionally, user-defined constraints can be
overconstrained and the learner cannot find a policy. Das et
al. use a Q-Learner to allocate threads and set CPU frequency
to obtain a given performance target [30]. Their work is
focused on thermal limits and performance targets are time-
based deadlines while our application’s execution is open-
ended thus we have no a priori knowledge of execution
time. Therefore we must use runtime metrics to determine
application performance. Deep Q-Learning (DQL) was used
on a similar big.LITTLE single-board computer to obtain near-
optimal performance per watt [31]. While we believe DQL
is a viable approach to power management, it does have a
few drawbacks that our work does not. Their system requires
the development of an Oracle which demands a significant
amount of offline training and benchmarking, which for a non-
deterministic physical system may be entirely infeasible.

III. ARCHITECTURE AND QUALITY OF SERVICE
MANAGER (QOSM)

Section III-A will give a brief overview of the design
and motivation of the architecture, and focus on specifics
that differ from previous work. A detailed discussion of Q-
Learning, its place in modern power management, and details
of implementation are discussed in Section III-B.

A. Software Architecture

In order to meet our requirements of abstraction and contro-
lability, we use a layered architecture, shown in Figure 1, made
of three primary components: compute-aware applications,
hardware abstraction layer, and a quality of service manager.
As discussed in Section II, the framework is based upon that
developed in [24] with some notable differences as discussed
below.

We define Compute-Aware Applications (CAAs) as applica-
tions which have meet the two requirements of controlability:
the ability to dynamically change algorithmic profiles, and
provide a metric of progress or performance. Multiple CAAs

Compute Aware

Application (CAA)

Quality-of-Service

Manager (QoSM)

Hardware Abstraction

Layer (HAL)

Operating System/

Hardware

algorithmic

changes

state 

vectors

performance 

metrics

application

guidance and

state

abstracted

actions

hardware/OS 

changes

Fig. 1. A high level view of the software framework architecture.

can be composed and individual results passed to the QoSM,
which continually monitors the CAA’s state. The CAA state
consists of both metrics (e.g. SNR, latency, control system
error signals), and application guidance to the hardware. It is
important to note that, especially in relation to the situation-
aware governor [24], QoSM does not have to know what the
metric or guidance means, it simply must be able to integrate
it into a unitless state vector. The QoSM uses a policy or set
of policies, in this case a Q-Learner, to take an action. Again,
this action does not have to be understood by the QoSM, it
simply must be able to observe the outcome. One can think of
these actions as a dial without a label that the learner turns and
observes the outcome. These actions are given to the hardware
abstraction layer (HAL), which converts them into low-level,
platform specific hardware/operating system changes.

Moving back up the software stack, the HAL receives met-
rics from the OS (e.g. performance counters, temperature, or
power measurements) which are then packed into a state vector
and passed to the QoSM. In the same way the QoSM passes
actions to the HAL, it also may suggest algorithmic changes
to the CAA. For example, if the QoSM finds itself with
excess capacity, the QoSM can inform the CAA to use higher
performance algorithms (e.g. deeper searches). When capacity
is limited, the QoSM can notify CAAs, allowing applications
the ability to degrade gracefully. This coordination between
application and hardware enables the development of more
intelligent and tailored policies.

B. Q-Learner Quality of Service Manager (2QoSM)

As discussed above in Section II, reinforcement learning is
a natural choice for management of both CPU P-states and ap-
plication profiles. Q-Learning is a technique for reinforcement
learning that does not require any knowledge of an underlying
model [32]. Instead of creating a model, Q-Learning estimates
a real-valued function Q of states and actions where Q(s, a) is
the expected discounted sum of future rewards for performing
action a in state s [33]. The values of Q are stored in a matrix
of dimensions s× a. Q is calculated using the function

Q′(st, at) = (1−α)·Q(s, a)+α·(rt+γ·max
a

Q(st+1, at)] (2)



where Q′(st, at) is the updated value in the Q-matrix, α is a
learning rate, rt is the instantaneous reward, γ is the discount
factor, and maxaQ(st+1, at) is an estimate of optimal future
value. The learning rate α ∈ [0, 1] is a parameter used to
balance the incorporation of new information with previously
calculated values. With a learning rate closer to 1, the update
of Q is more affected by the new reward, whereas a smaller
α weights existing Q values higher. The discount factor γ
determines the weighting of future versus present rewards with
a large γ favoring future rewards and a small γ maximizing
immediate rewards. γ = 0 creates an algorithm that only
maximizes instantaneous rewards, while γ ≥ 1 will not
converge and Q → ∞. The optimal future value is the best
possible Q available in the next iteration after taking best
action a. The algorithm for updating the Q-matrix every step
is shown as Algorithm 2.

1: if t = 0 then
2: Initialize Q-matrix ∀a, s,Q(s, a) = 0
3: end if
4: while st+1 6= endstate do
5: Observe current state st
6: Find maxaQ(st, a)
7: Take action a based upon selection policy
8: Calculate instantaneous reward r
9: Update Q based upon Equation 2

10: end while

Fig. 2. Q-Learning Update

The Q-matrix of size S × A, where S is the number of
states and A is the number of actions is allocated at startup,
and, in our implementation, initialized to zero. It is possible
to initialize the matrix to random values [34] or to use more
complex methods of pre-populating the Q-Matrix for faster
convergence [35] The learner observes its current state st, and
looks up row st in its Q-table. It examines the values in row
Q(st) and takes the action based upon its selection policy,
most often the action with the highest qst,a. During training,
it’s good practice to take a random action with probability ρ
to better explore the action-reward space. Once the action is
taken, the reward r is measured, and the q-value Qnew(st, at)
is updated based upon Equation 2.

In the problems often tackled by Q-Learning, the algorithm
ends when a specific goal state is reached, the system is
restarted, and learning continues from the beginning. However,
we are using Q-learning for non-episodic tasks which have
no terminal state. As long as the system finds itself in
previously encountered states, the learner can develop its Q-
function to obtain maximum future rewards. As the system
moves through states taking actions, the difference between
successive updates to a given Q(s, a) begins to decrease, and
the learner converges. In infinite time the Q-Learner converges
to an optimal policy, however the parameters of γ, α and ρ
can lead to different trained learners in finite time [36].

IV. EXPERIMENTAL RESULTS

The 2QoSM was tested on an autonomous robot which
was chosen for a few reasons. For one, it has a limited
power budget and its power consumption is dominated by two
similarly power-hungry components: a fairly powerful MCSoC
and motors. This is a useful characteristic for testing because
a reduction in CPU energy consumption directly allows for
a longer autonomous runtime. Moreover, it there is a direct
relationship between motor energy consumed on a less optimal
path and the energy saved by reduced CPU usage. Second,
the algorithm for route planning is computationally intensive,
and depending on the computational cycles allocated to it,
gives progressively better results. Third, there is a metric of
system performance, namely path error. Section IV-A details
the test platform, Section IV-B elaborates on the software
implementation of the Q-Learner-based Quality-of-Service
Manager (2QoSM), Section IV-C examines the training and
convergence, and Sections IV-D and IV-E discuss the overall
performance results of the power manager.

A. Experimental Platform Details

The robot is a heavily-modified DF Robot Cherokey 4WD
[37] using a custom stacked heterogeneous architecture. The
computational system consists of an Arduino ROMEO BLE
ATMega328/P [38] controlling the low-level motor controllers
and sensors, and a ODROID XU4 [39] running networking,
mapping, route planning, and trajectory planning.

The ODROID XU4 is a powerful multicore SoC (MCSoC)
single-board computer (SBC) and has been used as a test
platform in much previous work in intelligent power man-
agement [22]–[24], [31], [40], [41]. This ARM big.LITTLE
heterogeneous multiprocessing architecture (HMP) provides
thread scheduling between higher-performance higher-power
cores (Cortex-A15) and lower-performance lower-power cores
(Cortex-A7) and per-cluster DVFS. The XU4 is running
Ubuntu Linux with kernel v4.14.5-92. The robot traverses an
12 m x 12 m slalom course that divides this area into 1,440,000
1 cm squares. The robot uses Anytime Dynamic A* [42] to
chart a path around obstacles it observes. A feature of ADA*
that makes it especially suitable for use as a CAA is that it
iteratively and monotonically improves the quality of the path
during execution. A single iteration is enough for a correct
path through the obstacles, however, given more resources
(execution time), it is able to find a more efficient path.
When new obstacles are observed, the planner activates and
recalculates the path The trajectory planning thread determines
the maneuvers that are needed to follow the path based upon
the information obtained from odometry calculations, and then
passes these commands to the ATMega328.

B. Quality of Service Manager Implementation

Instead of using an existing framework for Q-Learning,
we opted for implementing our Q-Learner in C using GNU
Scientific Library [43] for a few reasons. First, most machine
learning libraries are written in Python which is unsuitable
for systems programming. Second, while there exist major



C++ implementations of machine learning libraries, this still
requires moving from an entirely C-based approach to C++
and introduces additional complexity. Finally, the Q-Learning
algorithm is relatively simple and was able to be implemented
using only the existing GSL library.

TABLE I
COMPOSITION OF STATE VECTOR

metric no. of levels cumulative states size (B)
error 10 10 400 B

power consumption 10 100 4000 B
replanning mode 2 200 8000 B

checksum error 4 400 16000 B
map updates 2 1600 64000 B

The Q-Learner runs as a separate thread from the navigation
algorithm. In this experiment, the 2QoSM operates on a 10
ms sample period. When the timer expires, the 2QoSM tests
the conditional at line 4 of Algorithm 2, and if the robot
has not reached its goal, it begins its update. First, it reads
the available metrics, discretizes them, and packages them
to states. Several different state combinations were assessed
during the course of this research, but the data presented in
this paper use the state variables shown in Table I. As can be
seen from the third column of Table I, the number of states
increases multiplicatively with the number of levels of each
additional state variable. Each entry of the Q-matrix is of type
double which in ARMv7 is 64 bits (8 B) and there are five
entries, one per action, per row. While each individual row in
the Q-matrix isn’t large (40 B), the rapid increase in matrix
size makes selecting useful state variables and their precision
quite important. That said, even with 1600 states, the total
size of the matrix is only 64 KB. One could easily halve the
size of the matrix by replacing double with 32 b float.
After determining its current state, the learner finds the row
in its Q-table associated with the state, and determines the
best action based upon the current policy. The default policy
is to choose the action with the highest future reward with
probability ρ = 0.9 and select a random action with probability
0.1. After taking its action, it observes the reward obtained by
the action, and updates the associated Q(st, at). Finally, the
timer is reset and the 2QoSM thread goes back to sleep.

C. Training and Convergence

The Q-Learner was trained by having the robot navigate
to randomly defined coordinates in an environment with ob-
stacles. Each tested reward function was trained for 600 s
before running the experiments shown in Section IV. Because
Q-Learning continues to improve its policy online, every
following run would have a further-trained learner. In our
results, we did not see any indication that further runs gave a
noticeable improvement in performance even though the policy
would continue to converge. However, to better compare the
results, after 600 s of training we froze the Q-matrix and
reused it to start each run.

The variables used for describing the reward functions are
shown in Table II.

TABLE II
SYMBOLS USED IN REWARD FUNCTIONS

Symbol Description
t Time of sample
Pt Instantaneous Power at time t

Pmax Maximum measured power
Et Error measured at time t

Emax Maximum measured error
r ADA* replanning active (0, 1)∑
r Accumulating sum of replanning

P̄n n-Sample moving Average of Power

TABLE III
REWARD FUNCTIONS TESTED IN 2QOSM

Reward Description Reward Function

Power Only 1 −
Pt

Pmax

Error Only 1 −
Et

Emax

Power + Error 2 −
(

Pt

Pmax
+

Et

Emax

)

Power + Error + Replan Flag 3 −
(

Pt

Pmax
+

Et

Emax
+ r

)

Power + Error + Accumulating
Replan Flag

3 −
(

Pt

Pmax
+

Et

Emax
+
∑

r

)

Weighted 1:10 power:error 1 −
(

0.1 ·
Pt

Pmax
+ 0.9 ·

Et

Emax

)
Error + 10-sample Moving Av-
erage of Power

2 −
(
Et + P̄10

)

D. Metrics

To evaluate the performance of different reward functions
defined in Table III), we’ve compared each trained learner to
the default Linux on-demand governor [11] and the situation-
aware governor [24]. The left part of Figure 3 shows metrics of
path error, average power, and the time required to navigate
the course. This is average data collected from 10 runs per
reward/governor. The Q-Learner updates its Q-matrix during
the run, but to maintain a constant baseline, reverts to the
original trained matrix before starting successive runs.

The functionality of the Q-Learner is demonstrated by
comparing the power-only and error-only reward functions.
When the reward function optimizes for power, it has the
lowest power consumption of any other configuration, however
it also has a significantly higher error. On the other hand, the
error-only reward function manages to obtain the minimum
error but at the cost of highest power consumption of all
governors other than the default Linux on-demand. The run-
time remains approximately the same for all governors, thus
the reduction in average CPU power correspond to total energy
savings.

The lowest power consumption is shown by the power-
only reward function, reducing power consumption by 2.98 W



RMS Path Error Average Power Run Time
0

0.2

0.4

0.6

0.8

1

Metric

R
el

at
iv

e
to

ba
se

lin
e

we = 1 wd = 1 we = 2 wd = 1 we = 1 wd = 2
0

0.2

0.4

0.6

0.8

1

Weights

R
el

at
iv

e
to

ba
se

lin
e

power only error only pow + err pow + err + replan pow + err + ramp
wt. pow + err moving avg sit. aware gov on demand

Fig. 3. The collected metrics of power, performance, and runtime on the left, Energy-Error Delay Product [24] of the reward functions with different weights
on the right

(42.6%) compared to the the default Linux governor and
0.457 W (10.2%) compared to the situation-aware governor.
The lowest RMS error is found by using an error-only reward
function, obtaining a 6.1% improvement over the on-demand
governor and 8.9% over the situation-aware governor. Using
the sum of power and error reward function reduces power
compared to the Linux on-demand governor by 2.703 W
(38.7%) and the situation-aware governor by 0.18 W (4.0%).
The error is also improved over the on-demand and situation-
aware governors by 4.6% and 7.49% respectively.

Because the improvement of physical system application
performance lies not only in the speed of completing the task,
but the quality of the solution, instead of measuring the energy-
delay product (EDP), we use the energy-error delay product
(EEDP) [24]

EEDP = E · εwe · Twd (3)

where E and T are normalized energy and runtime, ε is the
normalized system error, wε is the weight placed on the error,
and wd is the weight placed on delay. With the inclusion
of error into the metrics, we can evaluate different reward
functions more clearly, differentiating their performance based
upon the importance we place on energy, error, and delay.
These results are shown in Figure 3 on the right. If we weight
error and delay the same, the power-only reward function
still outperforms all others. However, if we put extra weight
on either error or delay, the sum of power and error as a
reward function shows the greatest performance. We believe
that the addition of EEDP as a metric for evaluating power
management decisions allows for researchers to not only
better differentiate between the aggregate behavior of different
algorithms, but to select the system that best meets the targeted
goals of the designer.

E. Time Series Evaluation

For a better understanding of what is happening during
the experiments, we present time-series data, collected at
every update of the algorithm (10 ms) during the course of
a run. While the previous data presented in Section IV-D are
averaged across 10 runs, the data below represent a single

representative traversal of the course. Due to space constraints,
we will only present a subset of the reward functions. The
top figure contains the measured current in blue (a proxy for
power since the voltage provided by regulators is constant), the
measured error in green (deviation from the ideal path), and
whether replanning is active or not in red/black. The bottom
figure shows the instantaneous reward during the run.

Time [s]

C
ur

re
nt

[A
]

/
R

ew
ar

d

E
rr

or
[m

m
]

20 40 60 80 100

0

0.5

1

1.5

2

20 40 60 80 100

0

200

400

600

800

Current Reward Error Replanning

Fig. 4. A time series plot of a single run using the power-only reward function.

The behavior of the power-only reward function in Figure
4 is clear. The learner determines that the best reward comes
from aggressively powering down the CPU. Even when error
spikes as at ~73 s, the power remains low. This is the correct
behavior since the error is due to drift from the ideal path
during recalculation. Once the path is calculated, the robot
finds the path just about as quickly in low-power as in high-
power. Interestingly, this behavior is close to that of the
situation-aware governor, however it requires no understanding
of the system, nor a tuning of Kp and Ke values.

When we add path error into the reward function as in
Figure 5, we see similar behavior as to the power-only. The
learner is able to determine that reduction in power brings with
it significant reward and therefore attempts to aggressively
power-down when not in replanning mode. Even when brief
periods of high-error occur, there is little reaction from the



Time [s]

C
ur

re
nt

[A
]

/
R

ew
ar

d

E
rr

or
[m

m
]

20 40 60 80 100

0

0.5

1

1.5

2

20 40 60 80 100

0

200

400

600

800

Current Reward Error Replanning

Fig. 5. A time series plot of a single run using a sum of power and error as
the reward function.

power manager. Again, because this error is due to path drift
during calculation, this can be seen as the right behavior.
However, because the path error of a robot cannot be changed
instantaneously, and decisions made by the power manager
affect the path of the robot only indirectly, we attempt to
better balance the near instantaneous changes to power and
the longer term changes to path error.

Time [s]

C
ur

re
nt

[A
]

/
R

ew
ar

d

E
rr

or
[m

m
]

20 40 60 80 100

0

0.5

1

1.5

2

20 40 60 80 100

0

200

400

600

800

Current Reward Error Replanning

Fig. 6. A single traversal of the course with error and 10-sample moving
average of power reward function. 2 −

(
Et + P̄10

)
In an attempt to better balance the near-instantaneous

action-caused changes in power with the slower, less direct
changes in error, we introduce an n-sample moving average
P̄n of the power. We examined 10, 50, and 100-sample
moving averages in our experiments, however we only present
the 10-sample as Figure 6. The 50 and 100-sample MAs
performed worse than the 10-sample without any additional
noticeable reaction to the error term. Because the sample time
is quite short (10 ms), a 10-sample MA still reacts quickly
to changes in the CPU states. This allows for the learner
to continue to find greater rewards by entering lower power
states. However, by losing the near-instantaneous feedback
from changing power states, the learning seems to be less
effective and thus the reduction of power isn’t as significant.

V. CONCLUSIONS

In this paper we describe three important outcomes. First,
we developed a C-based Q-Learning Quality-of-Service Man-
ager (2QoSM) that takes input from both application and
platform to learn a power management policy. The 2QoSM
reduced power compared to the Linux on-demand governor by
38.7-42.6% and the situation-aware governor by 4.0-10.2%.
Optimizing for minimum error obtained an improvement of
4.6-8.9% over these governors. Moreover, the reward func-
tions, state vector, and learning parameters can be easily
adapted for different systems or even dynamically adjusted.

The second important outcome demonstrates the value of
software abstractions created by the software framework. The
Q-learner was added to existing power management infrastruc-
ture without the need to tailor policies to application-specific
metrics or states. All that is required from the developer
is defining the discretization of desired state variables and
assignment of available actions. The abstracted nature of
actions allow for any controllable processor or application
functions to be adjusted (e.g. powering off cores, scheduling
algorithms, or core pinning) to meet the needs of reward
functions based on any combination of power, performance,
thermal, or reliability metrics. This allows for both quick
development of more complex or novel machine learning
algorithms and easy porting to different platforms. Moreover,
system programmers are not restricted to a specific type of
learner, or even to a single paradigm of control at all.

Finally, it is important to recognize the challenge of using
even fairly simple machine learning algorithms. Though the
mechanism of Q-Learning is well-understood, the learned
policies are much less so. There is increasingly a trade-off
between ease of use and deployment of high-performing ma-
chine learning, and human/operator understanding and tuning
of control systems and complex policies.

Future work is ongoing in a number of areas. We are
further examining hyperparameters for training and operation.
In addition, there are many different potential controlable plat-
form states such as offlining cores, scheduling, or application
algorithms. Furthermore, the target policies can be adjusted
based upon different reward functions such as total battery
life or thermal envelope. Additionally we are examining ML
techniques such as Q(λ) which may be more suited for
significantly time-delayed action-reward pairs. Finally, we
are exploring different platforms and applications to test the
2QoSM.

ACKNOWLEDGMENTS

This work was funded, in part, by National Science Foun-
dation grant 1538877.

REFERENCES

[1] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithm for
dynamic speed-setting of a low-power CPU,” in Proceedings of the 1st
Annual International Conference on Mobile Computing and Networking,
ser. MobiCom ’95. New York, NY, USA: ACM, 1995, pp. 13–25.



[2] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and
P. Bose, “Microarchitectural techniques for power gating of execution
units,” in Proceedings of the 2004 International Symposium on Low
Power Electronics and Design, ser. ISLPED ’04. New York, NY, USA:
Association for Computing Machinery, Aug. 2004, pp. 32–37.

[3] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving
DRAM refresh-power through critical data partitioning,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems. New York, NY, USA:
Association for Computing Machinery, Mar. 2011, pp. 213–224.

[4] K. Li, R. Kumpf, P. Horton, and T. Anderson, “A quantitative analysis of
disk drive power management in portable computers,” in Proceedings of
the USENIX Winter 1994 Technical Conference, ser. WTEC’94. USA:
USENIX Association, Jan. 1994, p. 22.

[5] Intel Corporation, “Intel automated relational knowledge base (ark),”
2020, [Online; accessed 3-March-2021].

[6] S. Ghose, A. G. Yaglikçi, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu,
H. Hassan, K. K. Chang, N. Chatterjee, A. Agrawal, and et al., “What
your DRAM power models are not telling you: Lessons from a detailed
experimental study,” Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 3,
Dec. 2018.

[7] M. N. Riaz, “Energy consumption in hand-held mobile communication
devices: A comparative study,” in 2018 Int’l Conf. on Computing,
Mathematics and Engineering Technologies (iCoMET), Mar. 2018, pp.
1–5.

[8] G. Bai, H. Mou, Y. Hou, Y. Lyu, and W. Yang, “Android power man-
agement and analyses of power consumption in an android smartphone,”
in 2013 IEEE 10th International Conference on High Performance
Computing and Communications 2013 IEEE International Conference
on Embedded and Ubiquitous Computing, Nov. 2013, pp. 2347–2353.

[9] B. Martinez, M. Montón, I. Vilajosana, and J. D. Prades, “The power of
models: Modeling power consumption for IoT devices,” IEEE Sensors
Journal, vol. 15, no. 10, pp. 5777–5789, Jun. 2015.

[10] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos
digital design,” vol. 27, no. 4, pp. 473–484, Apr. 1992.

[11] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in Proceed-
ings of the Linux Symposium, vol. 2, 2006, pp. 215–230.

[12] S. Ahmed and B. H. Ferri, “Prediction-based asynchronous CPU-
budget allocation for soft-real-time applications,” IEEE Transactions on
Computers, vol. 63, no. 9, pp. 2343–2355, Sep. 2014.

[13] R. Ge, X. Feng, W. c. Feng, and K. W. Cameron, “CPU MISER:
A performance-directed, run-time system for power-aware clusters,” in
2007 Int’l Conference on Parallel Processing (ICPP 2007), Sep. 2007.

[14] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini,
“CoScale: Coordinating CPU and memory system DVFS in server
systems,” in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2012, pp. 143–154.

[15] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory power estimation and capping,” in 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED),
Aug. 2010, pp. 189–194.

[16] S. Albers and A. Antoniadis, “Race to idle: New algorithms for speed
scaling with a sleep state,” ACM Trans. Algorithms, vol. 10, no. 2, pp.
9:1–9:31, Feb. 2014.

[17] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware
energy management approach for dynamic priority systems,” in 23rd
Euromicro Conference on Real-Time Systems, Jul. 2011, pp. 92–101.

[18] M. Giardino and B. Ferri, “Correlating hardware performance events
to CPU and DRAM power consumption,” in 2016 IEEE International
Conference on Networking, Architecture and Storage (NAS). IEEE,
Aug. 2016, pp. 1–2.

[19] B. Li and K. Nahrstedt, “A control-based middleware framework for
quality-of-service adaptations,” IEEE Journal on Selected Areas in
Communications, vol. 17, no. 9, pp. 1632–1650, Sep. 1999.

[20] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic, “ControlWare: A
middleware architecture for feedback control of software performance,”
in Proceedings of the 22 Nd International Conference on Distributed
Computing Systems (ICDCS’02), ser. ICDCS ’02. Washington, DC,
USA: IEEE Computer Society, Jul. 2002, pp. 301–310.

[21] H. Hoffmann, “Coadapt: Predictable behavior for accuracy-aware ap-
plications running on power-aware systems,” in 2014 26th Euromicro
Conference on Real-Time Systems, Jul. 2014, pp. 223–232.

[22] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann, “POET:
a portable approach to minimizing energy under soft real-time con-

straints,” in 21st IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, Apr. 2015, pp. 75–86.

[23] C. Imes and H. Hoffmann, “Bard: A unified framework for managing
soft timing and power constraints,” in 2016 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS), Samos, Greece, Jul. 2016, pp. 31–38.

[24] M. Giardino, E. Klawitter, B. Ferri, and A. Ferri, “A power- and
performance-aware software framework for control system applications,”
IEEE Trans. on Computers, vol. 69, no. 10, pp. 1544–1555, Oct. 2020.

[25] A. Das, M. J. Walker, A. Hansson, B. M. Al-Hashimi, and G. V. Merrett,
“Hardware-software interaction for run-time power optimization: A
case study of embedded linux on multicore smartphones,” in 2015
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE, Jul. 2015, pp. 165–170.

[26] J. F. Martinez and E. Ipek, “Dynamic multicore resource management:
A machine learning approach,” IEEE Micro, vol. 29, no. 5, pp. 8–17,
Sep. 2009.

[27] R. Ye and Q. Xu, “Learning-based power management for multicore pro-
cessors via idle period manipulation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 7, pp.
1043–1055, Jul. 2014.

[28] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous
power management using reinforcement learning,” ACM Trans. Des.
Autom. Electron. Syst., vol. 18, no. 2, pp. 24:1–24:32, Apr. 2013.

[29] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia
applications using machine learning,” in Proceedings of the 48th Design
Automation Conference, ser. DAC ’11. New York, NY, USA: ACM,
Jun. 2011, pp. 95–100.

[30] A. Das, B. M. Al-Hashimi, and G. V. Merrett, “Adaptive and hierarchical
runtime manager for energy-aware thermal management of embedded
systems,” ACM Trans. Embed. Comput. Syst., vol. 15, no. 2, pp. 24:1–
24:25, Jan. 2016.

[31] U. Gupta, S. K. Mandal, M. Mao, C. Chakrabarti, and U. Y. Ogras, “A
deep q-learning approach for dynamic management of heterogeneous
processors,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp.
14–17, Jan. 2019.

[32] C. J. C. H. Watkins and P. Dayan, “Q-learning,” vol. 8, no. 3, pp. 279–
292, May 1992.

[33] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning
is direct adaptive optimal control,” IEEE Control Systems Magazine,
vol. 12, no. 2, pp. 19–22, Apr. 1992.

[34] Chi-Hyon Oh, T. Nakashima, and H. Ishibuchi, “Initialization of q-
values by fuzzy rules for accelerating q-learning,” in 1998 IEEE In-
ternational Joint Conference on Neural Networks Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No.98CH36227),
vol. 3, May 1998, pp. 2051–2056 vol.3.

[35] Y. Song, Y.-b. Li, C.-h. Li, and G.-f. Zhang, “An efficient initialization
approach of q-learning for mobile robots,” Int’l Journal of Control,
Automation and Systems, vol. 10, no. 1, pp. 166–172, Feb. 2012.

[36] E. Even-Dar and Y. Mansour, “Learning rates for q-learning,” J. Mach.
Learn. Res., vol. 5, pp. 1–25, Dec. 2004.

[37] DFRobot, “Cherokey 4WD datasheet,” https://wiki.dfrobot.com/
Cherokey_4WD_Mobile_Platform__SKU_ROB0102_, accessed: 2021-
03-27.

[38] ——, “ROMEO BLE datasheet,” https://wiki.dfrobot.com/RoMeo_
BLE__SKU_DFR0305_, accessed: 2021-03-27.

[39] R. Roy and V. Bommakanti, ODROID XU4 User Manual, Hardkernel,
Gyeonggi, South Korea.

[40] U. Gupta, C. A. Patil, G. Bhat, P. Mishra, and U. Y. Ogras, “DyPO:
Dynamic pareto-optimal configuration selection for heterogeneous MP-
SoCs,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp. 123:1–
123:20, Sep. 2017.

[41] A. M. Rahmani, B. Donyanavard, T. Mück, K. Moazzemi, A. Jantsch,
O. Mutlu, and N. Dutt, “SPECTR: Formal supervisory control and coor-
dination for many-core systems resource management,” in Proceedings
of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’18.
New York, NY, USA: ACM, Mar. 2018, pp. 169–183.

[42] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm,” in Proceed-
ings of the 15th International Conference on Automated Planning and
Scheduling. AAAI Press, May 2005, p. 262–271.

[43] B. Gough, GNU Scientific Library Reference Manual - Third Edition,
3rd ed. Network Theory Ltd.

https://wiki.dfrobot.com/Cherokey_4WD_Mobile_Platform__SKU_ROB0102_
https://wiki.dfrobot.com/Cherokey_4WD_Mobile_Platform__SKU_ROB0102_
https://wiki.dfrobot.com/RoMeo_BLE__SKU_DFR0305_
https://wiki.dfrobot.com/RoMeo_BLE__SKU_DFR0305_

	Introduction
	Related Work
	Architecture and Quality of Service Manager (QoSM)
	Software Architecture
	Q-Learner Quality of Service Manager (2QoSM)

	Experimental Results
	Experimental Platform Details
	Quality of Service Manager Implementation
	Training and Convergence
	Metrics
	Time Series Evaluation

	Conclusions
	References

