
Move your code, not your data
Michael Giardino

Computing Systems Lab
Huawei Technologies

Zürich, ZH, Switzerland
michael.giardino@huawei.com

Siddharth Gupta
Computing Systems Lab
Huawei Technologies

Zürich, ZH, Switzerland
siddharth.gupta3@huawei.com

Lukas Humbel
Huawei Technologies

Zürich, ZH, Switzerland
lukas.humbel@huawei.com

Rene Mueller
Computing Systems Lab
Huawei Technologies

Zürich, ZH, Switzerland
rene.mueller@huawei.com

Anirban Nag
Computing Systems Lab
Huawei Technologies

Zürich, ZH, Switzerland
anirban.nag@huawei.com

Abstract
Memory requirements in the datacenter have increased dramati-
cally, however current memory technologies are unable to keep
up due to poor density scaling and pad-limited integration. Fur-
thermore, such expensive memory resources are not efficiently
utilized, in part, because of memory stranding issues. These factors
have resulted in the emergence of disaggregated or far memory as
a solution to increase capacity beyond a single node, and enable
memory pooling to address underutilization. However, far memory
comes with many challenges which may hinder its adoption. In
this paper, we highlight these challenges ranging from high access
latency, new failure domains, non-trivial data sharing mechanisms,
and added infrastructure cost. We then enumerate a broad set of so-
lutions to handle high access latency of far memory and introduce
a taxonomy in terms of implementation complexity. Finally, we
motivate an under explored solution—shipping code to data—using
various function shipping techniques.

CCS Concepts
• Computer systems organization → Heterogeneous (hybrid)
systems; Distributed architectures; • Networks→ Program-
ming interfaces.

Keywords
far memory, memory wall, function shipping

ACM Reference Format:
Michael Giardino, Siddharth Gupta, Lukas Humbel, Rene Mueller, and Anir-
ban Nag. 2025. Move your code, not your data. In 4th Workshop on Het-
erogeneous Composable and Disaggregated Systems (HCDS ’25), March 30,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3723851.3723856

The authors are listed alphabetically.

This work is licensed under a Creative Commons Attribution International
4.0 License.

HCDS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1470-2/25/03
https://doi.org/10.1145/3723851.3723856

1 Introduction
The gap between CPU and memory performance has been steadily
widening [16], even as per-core CPU improvement has slowed [54].
This gap, often termed the “memory wall” [56], has long had signif-
icant implications in how we design systems and applications. The
slowing of DRAMprocess scaling [27, 32] plays a large part, prevent-
ing the increase in performance and density seen by CPUs. Other
challenges include the pad-limited physical connection of DDRx
DRAM modules to CPUs [9], high power consumption (including
regular refreshing), and the load of high-frequency parallel buses,
limiting maximum frequency. The introduction of high-bandwidth
memory primarily addresses bandwidth, while new memory tech-
nologies (e.g., PCM, ReRAM) attempt to improve density, persis-
tence, and energy consumption. However, none of these proposed
solutions scale the memory wall, and the growing data sizes only
push larger capacity devices further up the memory hierarchy;
previously to high-capacity non-volatile main memories such as
Optane™ and now to a new class of memory, connected via non-
traditional interconnects such as Compute Express Link (CXL).

In this paper, we examine the challenges introduced by far mem-
ory and introduce a taxonomy to help systematize disparate ways
of remote memory integration. From this taxonomy, we experimen-
tally motivate a less common approach, function shipping code to
data, for dealing with memory latency.

2 Background
The strongest voice for disaggregation comes from the cloud. Poor
utilization rates of resources, especially expensive DRAM, have led
to proposals for the ability to allocate unused memory from remote
nodes [10]. More radical architectures include entire CPU-less mem-
ory pools [25] or completely disaggregated systems with compos-
able nodes made of memory, compute and storage. Cloud providers
often show CPU utilization rates hovering around 40% [40, 53],
while VM hosting servers report 15-30% unused physical mem-
ory [31, 35] with allocated but unused memory even higher around
30% [31, 35]. One major cause of this is the granularity of virtual
machine instances which come with a fixed core-memory ratio,
due to the physical layout of the underlying machine. Managed
services such as software-as-a-service (SaaS) and function-as-a-
service (FaaS) attempt to handle this problem by having providers
manage the underlying infrastructure allocation. But the lack of

https://orcid.org/0000-0002-9906-720X
https://orcid.org/0000-0002-6165-9461
https://orcid.org/0000-0001-8326-7074
https://orcid.org/0000-0001-6084-9944
https://orcid.org/0000-0003-4905-8038
https://doi.org/10.1145/3723851.3723856
https://doi.org/10.1145/3723851.3723856
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3723851.3723856


HCDS ’25, March 30, 2025, Rotterdam, Netherlands Michael Giardino, Siddharth Gupta, Lukas Humbel, Rene Mueller, and Anirban Nag

customizability and vendor lock-in (especially in SaaS), and the
high operational cost relative to infrastructure as a service (IaaS)
(and on-premises hardware) can make this less desirable to cus-
tomers [20]. While there have been proposals for more flexible FaaS
allocations, most remain tied to a fixed core-memory ratio [37].

Besides bin packing of sub-physical machine sized VMs, there
exist an important class of applications such as databases, analytics,
scientific computing, and machine learning which require memory
far beyond the scale of the largest physical node. While structured,
parallel workloads such as those found in scientific computing
are carefully designed, allocated, and scheduled, other more un-
structured, dynamic, and memory intensive workloads may benefit
the most from far memory. By moving main storage to far mem-
ory, table spaces can be shared among multiple database processes
running on different nodes without requiring data replication [33].
Similarly, large index structures as used for nearest-neighbor search
in vector databases and retrieval-augmented generation (RAG) can
be shared in far memory [21, 24]. That said, even if these workloads
can make use of far memory, the placement of data within memory
is critical for performance [33].

2.1 Enabling Technologies
While there have been distributed memory systems over the years,
the current industry is centering around a few primary technolo-
gies. With the expansion of GPUs and other accelerators for AI, we
have seen a proliferation of interconnect technologies that attempt
to go beyond traditional PCI-attached devices. AMD’s Infinity Fab-
ric and NVIDIA NVLink both integrate GPUs more closely with
the CPUs and have seen topologies expand beyond a simple hub
and spoke design. The most broadly researched standard is the
Compute eXpress Link (CXL) [50]. There are several standards of
CXL, each with increasing capabilities. Initial versions offered some
limited concept of coherence and no sharing, while later versions
added pooling (2.0) and sharing (3.0) and a model that is closer to
symmetric coherence.

Our analysis aims to be interconnect agnostic in the sense that
we are interested in a superset of available, proposed, and potential
features that would allow for the pooling of memory. Thus, we will
be focusing on these more advanced interconnect technologies that
could be described as fabrics in whichmemory is not only connected
directly to a CPU, but is accessible within a rack (inter-node) or
beyond. These specific features of individual technologies vary sig-
nificantly and are constantly evolving, thus a detailed comparison
is beyond the scope of this paper. However, we can identify certain
capabilities that are necessary or beneficial for memory pooling.
The most relevant features include byte addressability, load-store
access, sharing, coherence, and peer-to-peer communication. We
will examine the application of these in the next section and explore
the challenges introduced in Section 3.

2.2 Terminology
Before we examine problems posed and opportunities presented by
modern memory systems, it is important to examine the ecosystem,
and in doing so, define our terms.

In this paper, a tiered memory system is defined as one that
has multiple memories beyond last-level cache (LLC) and before

block storage that with different performance characteristics. These
differences are due multiple memory technologies connected to the
CPU memory controllers such as a DRAM-NVMM system and/or a
non-traditional CPU-DRAM topology such as a system with CPU-
and CXL-attached memory. Heterogeneous memory is closely
related however we will use it to describe systems only if they
contain different physical memory technologies (e.g., DDR4 vs
DDR5 vs HBM vs PCM) but not memories of the same technology
but with different latency or bandwidth characteristics (e.g., NUMA
or CXL-attached DRAM). This distinction is helpful for identifying
energy and density differences between systems.

We use the term far memory to describe byte-addressable load-
store memories that are not directly connected to a specific CPU’s
memory controllers, including cross-socket NUMA memory, CXL-
attached Type-3 devices and memory-semantic SSDs.Disaggregated
and pooled memory are often used interchangeably, however we
will try to make a distinction between these terms for clarity. Dis-
aggregated memory is a form of CPU-less far memory that can
be allocated by one or more nodes via CXL, RDMA, etc., also some-
times referred to as zero-CPU NUMA (zNUMA) [19, 35]. Pooled
memory can be either disaggregated or unallocated on a traditional
node and can be allocated by systems via network or interconnect.

These systems can be further distinguished by the scope of ad-
dressing, level of sharing, and coherence. On one extreme, we have
traditional NUMA systems which share a single address space, can
share arbitrary memory between CPUs, and caches are kept coher-
ent. A pointer passed from one core to another can be successfully
dereferenced, and indeed the process itself can be migrated since
they share an operating system. Such systems are very challenging
to engineer and scale. At the other extreme, we have a traditional
distributed system which shares nothing, where all communica-
tions are explicit and done via RDMA, RPC, etc. The traditional
service-based cloud operates on systems such as these, and while
the communication mechanisms themselves have become very effi-
cient, they still contribute to the datacenter tax and their usage is
only growing [46].

Future systems, especially as they expand to the rack scale, will
likely lie somewhere in-between, with configurable domains of
addressing and coherence. Whatever the future system looks like,
there will be significant challenges in integration.

3 Far Memory Challenges
While there are good reasons for expansion via tiered memory, we
discuss the primary areas in which problems arise. The latency of
local DRAM is already difficult or impossible to hide, and as with
NVMM, far memory latency is even higher. When we build shared-
memory systems on top of a higher latency, scalable fabric, there are
significant challenges to correctness and consistency. The common
system assumption that memory is reliable no longer holds, and
different failure modes need to be handled. Finally, the cost/benefit
of far memory is still unclear.

3.1 Hiding latency
With the enormous bandwidth available in modern interconnects,
the primary performance challenge with far memory for general



Move your code, not your data HCDS ’25, March 30, 2025, Rotterdam, Netherlands

Table 1: Number of instructions necessary to hide latency

Memory Type Latency 6-wide
2 GHz 3.4 GHz 4 GHz

L1/L2 <10 𝑛𝑠 120 204 240
L3 [13, 15] 30 𝑛𝑠 360 612 720
DDR5 [13] 100 𝑛𝑠 1,200 2,040 2,400

Cross socket [12] 200 𝑛𝑠 2,400 4,080 4,800
CXL [35] 300 𝑛𝑠 3,600 6,120 7,200

Optane™ [45] 350 𝑛𝑠 4,200 7,140 8,400
Intra Rack CXL 400 𝑛𝑠 4,800 8160 9600
Context Switch 1 𝜇s 12,000 20,400 24,000
Inter Rack CXL 10 𝜇s 120,000 204,000 240,000

purpose computing is latency. Fortunately, most fundamental struc-
tures of modern CPUs exist to hide memory latency. Caches, out-
of-order execution, multi-wide issue, simultaneous multithreading
(SMT), branch predictors, and prefetchers are all present to hide
memory latency. It is well-understood that these features cannot
hide the “killer microsecond” [4] from low-latency I/O. However,
as research has shown, they are not enough to hide the latency of
remote memory [35]. In fact, we argue that given the multi-wide
issue and high frequency of modern CPUs, Table 1 shows that even
large reorder buffers (e.g., Sapphire Rapids [11] has 512 ROB en-
tries) are insufficient to hide even an LLC miss, let alone a remote
memory access. The killer microsecond is now sub-microsecond
and shrinking.

1ns 10 ns 100 ns 1 µs

L1/L2 L3
L3

DRAM

remote

local
DRAM

CXL
x-rack

out-of-order multithreading OS

Figure 1: Various local (green) and remote (red) members
of the memory hierarchy spans a broad range of latency.
The yellow box shows the latency ranges well handled by
out-of-order execution. The blue box shows the limits ofmul-
tithreading techniques while the orange box shows where
the OS begins to take over. The gap around DRAM (local and
remote) and CXL memory is the focus of this paper.

Figure 1 shows the various techniques available for different la-
tency bands in modern systems. The difficulty of hiding this latency
is demonstrated clearly in Li et al. which shows that moving data
from local to standard NUMA latency (78 ns vs. 142 ns) slowdowns
of up to 50% are seen [35]. When latencies are increased from 115 ns
to 255 ns (lowest observed latency of real CXL1.1 hardware [52]),
slowdowns can approach 100%. Increasing the number of threads
through SMT [22, 29] may hide more latency than reordering, but it
comes back to the ratio between potential instruction issue rate and
memory latency. If a processor can issue hundreds or thousands of
instructions before a memory request is serviced, it is hard to find

enough parallelism, rendering many of these structures unhelpful
for far memory. Large LLCs (passing 1 GB in the highest end pro-
cessors [3]) are popular additions to modern CPUs for both power
and performance reasons. However, for many of the big data ap-
plications that would make use of far memory, even if the primary
working set fits in LLC the secondary set cannot and thus, larger
caches offer diminishing returns [48, 49]. Moreover, these enor-
mous LLCs are, in reality, physically distributed among each core,
giving optimal latency to a slice of 10-20 MB, forcing any larger
working sets to spill to higher-latency neighboring caches [1, 15].

If the required data is predictable, it can be prefetched into the
cache to be ready when it is needed. Even if the CPU can accurately
identify prefetches many hundreds or thousands of instructions
away from use, there still are questions of timeliness and cache
capacity. In cloud workloads [23] and in higher latency NVMM [5],
hardware prefetchers can even harm performance.

3.2 Sharing
Another significant hurdle in far memory systems is the challenges
of sharing data. CXL, for example, has gone through many augmen-
tations of its sharing abilities over various versions. Even though
CXL ostensibly supports rack-scale interconnection, it is not clear
how these devices will integrate or scale to the rack level.

Especially between homogeneous CPUs, there is an implicit
contract that shared memory viewed by two different cores will
have some model of consistency. With low latency and a relatively
small number of nodes, hardware-based coherence offers significant
advantages in efficiency and programmability. However, previous
research in rack-scale coherence has shown significant limitations
as the number of nodes grow and, most importantly, the amount
of shared mutable data increases. The more writers and readers
to a particular shared memory region, the greater the pressure on
coherence mechanisms. If, due to scaling difficulties, hardware-
based coherence is abandoned in favor of software techniques of
consistency, this shifts a significant burden onto the application
designer.

3.3 Failure
An often overlooked issue in modern pooled memory systems (but a
first-order concern in large-scale distributed ones) is how to handle
failures [14]. Load-store shared-memory systems such as a standard
multi-socket NUMA system have an implicit assumption that mem-
ory is reliable. Therefore, if a portion of physical memory is not
available or a load never returns, there are few mechanisms to han-
dle this gracefully either in hardware or by the OS. Transient errors
may be handled by ECC but permanent ones are dealt with, at best,
by the OS via hot(un)plug [38] and terminating the affected pro-
cesses. In the worst case, the result is a kernel panic that brings the
whole node down. From the perspective of software, the failing sys-
tem exhibits a fail-stop behavior. Large, mission critical or massively
parallel systems rely on redundant execution, coding techniques, or
software-managed resiliency for failures, e.g., by using replication
and a consensus protocol [8]. A system that uses disaggregated or
pooled memory can be composed of multiple components which
may fail independently. The likelihood of a failure increases with
system scale. Furthermore, when a only subset of the compute or



HCDS ’25, March 30, 2025, Rotterdam, Netherlands Michael Giardino, Siddharth Gupta, Lukas Humbel, Rene Mueller, and Anirban Nag

memory components fail, a partial application or VM failure can
occur, which is more difficult to handle than a fail-stop failure. Par-
tial failures may also come in the form of dropped/delayed network
packets (not uncommon even in well-engineered modern datacen-
ters [36]). While networking protocols are fully capable of handling
such situations, the hardware load-store unit and memory manager
are not, introducing several complex failure modes. However, the
manner in which pooled memory is proposed in the cloud often ne-
glects these challenges, leaving the mechanisms required to recover
unclear.

Additional challenges arise when memory is shared among dif-
ferent VMs or processes. A shared memory region may remain
allocated even after all VMs or processes accessing it have termi-
nated. For example, an in-memory database system may keep its
shared buffer pool alive when all engine processes are shut down
during migration and maintenance operations. Hence, shared mem-
ory can outlive the compute processes and effectively behaves like
persistent memory, even though the underlying DRAM is volatile.
We may learn lessons from previous research into NVMM such as
Optane™ [55]. One of the major insights from NVMM is that hav-
ing a easy-to-understand border between “memory” and “storage”
(usually crossed with an explicit syscall e.g., write() and sync), is
taken for granted in system design, and, thus, when persistence is
brought across this memory-storage frontier, complex crash consis-
tent mechanisms must be developed [58]. In the same way much
(but not all [47]) early optimism into NVMMneglected the difficulty
of integrating persistent memory into existing systems, we must
plan for the certainty of failure in pooled memory systems.

Fortunately, far memory itself does not necessarily have to come
with all aforementioned challenges. Consider a VM that allocates
remote memory for expansion: if that memory is not shared with
any other VM and released when the VM is terminated, the failure
behavior of the remote memory is akin to that of local memory in a
NUMA-system; if the far memory node goes down, the VM simply
fails. In case the VM host crashes, the hypervisor of the memory
node will eventually notice the failure and free the allocated mem-
ory. Note that the same applies even in a scenario in which far
memory is shared between two VMs as long as they are in the same
failure domain, i.e., if one fails so does the other. When using far
memory, it essential to consider the relevant failure domains—as in
any distributed system.

3.4 Costs
Hyperscalers observe that DRAM costs (and associated energy)
approach 40% of total datacenter usage [42]. This motivates the
need not to waste or “strand” memory in the cloud, but, we ar-
gue, it makes a strong argument against disaggregated memory
(i.e., CPU-less memory nodes). This is part of the case made by
Levis et al. against CXL memory pooling [34], in which they ar-
gue that the monetary cost of DRAM is already very high so if
one adds specialized CXL hardware, including switches, the cost
goes even higher, approaching the cost of a normal server. How-
ever, if next-generation interconnects are able to replace existing
Ethernet-based rack networking infrastructure, the additional cost
of interconnection will be borne anyway.

A reasonable counterargument can be made that much of this
memory already exists in the form of older DDR3 and DDR4 DIMMs,
with similar capacity but no longer compatible with state-of-the-art
processors. These DIMMs represent a significant amount—nearly
half by some estimates [41]— of the embodied carbon of a server,
not to mention the CAPEX. Some have suggested that these older
technology memories could constitute a lower-performance tier
of memory [6], but, as we examined in Section 3.1, hiding DRAM
latency is already a challenge, made worse by greater distance
and older technology. One alternative is to pair more efficient,
simpler cores, possibly in a manycore format [39, 51], with this
older memory, allowing for the execution of memory-intensive
functions local to the memory, discussed in more detail in Section 5.

4 Taxonomy
To clarify the potential solutions available for using far memory, we
present in Figure 2 a taxonomy of techniques available to system
designers for integrating far memory. From left, the primary distinc-
tion is whether the application manages far memory directly. If it
does not, it may fall to the operating system (first branch) or hypervi-
sor (second branch) to transparently allocate, measure hotness and,
migrate pages. Such approaches include Linux’ automatic NUMA
balancing [26], TPP [42], Infiniswap [18] and others [17, 28, 57]
which rely on various forms of hot page detection to correctly move
pages between memory regions. Most of these techniques can be
implemented at both OS or hypervisor level, but their effective-
ness may vary. Implementation in the hypervisor enables memory
overcommitment at the cloud level. It also provides a global view
and enables, for example, finding the globally coldest page. Observ-
ing processes, on the other hand, allows better understanding of
application access patterns.

Our taxonomy distinguishes cloud provider services (often mar-
keted as X -as-a-service) from the hypervisor. Thus, if far memory
is transparent to the OS and the hypervisor, it can still be used
for infrastructure. If the application is aware of different regions
of memory, then we argue that the primary bifurcation occurs be-
tween whether the far memory has load-store semantics or uses
some form of direct memory access. When load-store access is pro-
vided, the remaining question is whether it uses load-store on local
memory (by moving the execution to data) or the application steers
allocations (using e.g., pmalloc or madvise).

In general, the complexity of application integration and perfor-
mance both increase (as shown on the right side of Figure 2) from
bottom to top. Allowing the provider to make use of far memory
requires no knowledge from the software developer (nor indeed
the operating system), but the improvements can be low and may
even hurt performance (in the case of overprovisioning). On the
other hand, steering memory allocation or decomposing applica-
tions into shippable functions increase application complexity, but
yield larger gains.

All of these techniques in some form or another have shown
value, but with various tradeoffs. For the remainder of this paper, we
focus on a single area we believe has been underexamined, namely
function shipping.



Move your code, not your data HCDS ’25, March 30, 2025, Rotterdam, Netherlands

Figure 2: The solutions for far memory can be placed in a taxonomy. Square boxes show techniques for managing far memory
and the right box gives examples. Application complexity but also potential performance increase from bottom to top.

5 Function Shipping
Traditional data-locality aware computing distributes subsets of
data among a collection of nodes. In the case of database sharding
or map-reduce, knowledge of both where the data is located and
which data will be accessed, must be known at the time of task
scheduling, i.e., before execution. In some cases, this assumptions
hold, and thus this technique performs well. However, there exist
many classes of applications in which a priori knowledge of the
data being accessed is not available. In such cases, job scheduling
is suboptimal and necessitates higher-latency remote accesses. As
memory latency increases, if it cannot be hidden by prefetching
(as in the case of data dependent loads) the performance degrades
heavily. At this point, the best solution may be to dynamically send
the execution to data. A possible solution is processing in memory
(PIM), whichmoves operations intomemory but for general purpose
computing it has many drawbacks. The physical structure of the
memory spreads data across many ranks, banks, and channels, so
the placement of compute logic is not obvious, as tasks besides
memsets and bitwise operations become very complex. Related,
the semantics, consistency, and correctness of such operations are
unclear. Finally, DRAM is already expensive and adding custom
(but limited) logic will only drive up the price.

In such scenarios, we propose function shipping using stateless
serverless functions [30] or a stateful continuations [44] to migrate
execution to the data. The ability to move closer to the data allows
for memory intensive (i.e., low operations per byte) to become
significantly more efficient.

In order to obtain this flexibility, there are several possibilities
available. On the one extreme, specific memory intensive functions
could be accelerated near memory without interrupting or allocat-
ing resources on the remote node. For example, gathers, scans, or
reductions could occur in a specialized accelerator on the remote
node. It can have a highly specialized architecture, while not in-
terrupting the remote CPUs. The drawback, however, is limited
functionality, especially if this is a fixed-function processor, and the
addition of data types or operations may be difficult or impossible.
A more programmable accelerator could be imagined, something
resembling a specialized CISC processor with new functions that
can be updated via microcode (e.g., Amazon Trainium [7]). This
still limits functionality and requires writing code for the specific

(mutable) ISA or relying on an API or library, but could be justified
for commonly used functions.

On the other extreme is simply sending the entire virtualmachine
to the data as is done in live migration, allowing for transparent
movement of execution to code with no programmer input. This
naïve approach has several obvious problems, such as the size
of the VMs data and the latency incurred by partial migrations,
leaving critical data structures on the remote node. The data of an
entire virtual machine may be much too large to quickly migrate,
especially if the operation is relatively short. If all the VM’s memory
is not migrated, what remains may be critical and latency sensitive,
slowing down the operating system. Allocation of sufficient vCPUs
would also be required by the hypervisor.

A more pragmatic solution lies somewhere between, in which
specific functionality is available in the form of either a stateless
function or a stateful continuation. This allows for the invocation
or migration of functionality in a lightweight modern sandbox such
as a virtual machine (e.g., microVM, unikernel), container, or run-
time (e.g., Wasm, GraalVM). While this still requires “core stealing"
from available CPUs on the remote node, given these operations
are seldom compute intensive (and are thus memory bound), they
could be handled by a much smaller vCPU allocation than a virtual
machine. Moreover, CPU resources would not have to be used the
entire time memory is allocated, allowing for more efficient use of
resources (in the case of cloud providers) and lower cost (in the
case of users). In the case of using reusing older technologies in
a memory blade, simple, low-power cores could be used to run
these memory-intensive functions. Whatever the solution used, the
shared address space and load-store access allows for a fault-free
fall back to (albeit slower) NUMA-like access.

5.1 Function Shipping Cost
To motivate this approach, we examine the overhead of function
shipping using various techniques. We emulate a remote mem-
ory system using a two-socket NUMA system with local memory
latency of ≈110 ns and remote (cross-socket) latency of ≈258 ns.
We wrote a testing framework (≈5k C++ LoC) that uses the multi-
process model via POSIX shared memory, allowing for the shar-
ing of memory and the communication between cores via POSIX



HCDS ’25, March 30, 2025, Rotterdam, Netherlands Michael Giardino, Siddharth Gupta, Lukas Humbel, Rene Mueller, and Anirban Nag

Table 2: Function Shipping Examples

Shipping method shipping
overhead

min. number of
remote accesses

thread migration 62 𝜇s 419
FS RPC w/o code 52 𝜇s 351
FS RPC w/ native
code shipped

115 𝜇s 788

FS RPC w/ Wasm
code shipped

8,300 𝜇s 57,448

message queues. We evaluate a microbenchmark consisting of a
randomly shuffled linked list, with the dataset on the remote node.

Table 2 shows the results of the tested function shipping meth-
ods, their overheads, and the number of equivalent remote memory
accesses required to match the overhead of migration. For a base-
line, we use normal OS-controlled thread migration which takes
≈62 𝜇s (or the equivalent of 419 remote accesses). We note that this
baseline necessitates both nodes running the same operating system
instance and thus is not likely in a disaggregated system which may
consists of multiple independent nodes (and operating systems).
The basic communication overhead of an RPC in which the code
already is running in a thread on the remote node is 52 𝜇s. This
is equivalent to having a remote application running all the time.
The next version ships the function as a dynamically loaded shared
object (.so). It loads the .so into shared memory on the local node,
and then sends a reference to it to the remote node, which then be-
gins executing it (via implicit transfer). This requires 115 𝜇s but has
the advantage of allowing for the execution of arbitrary functions
on a remote node. Finally, to move closer to a serverless technique,
we provide Wasm-based sandboxing. This begins by sharing the
code as a Wasm module and, as in the previous example, sending a
reference of its location to the remote node, which creates a Wasm
instance and executes the function on the remote data. This has the
largest overhead (8,300 𝜇s), however it provides strong isolation
guarantees.

In these examples, function shipping can be surprisingly cheap,
which can be offset by a relatively small number of remote accesses.
When shipping native code, performance is equal to local execution
(because it now is) and shipping Wasm provides nearly identical
performance to native code (110 ns vs. 113 ns per access).

5.2 Shipping Query Plans
We now show more complete example, shipping query plans in
DuckDB [43]. We use the same NUMA machine from the previous
experiment with a remote memory latency approximately 2.5×
that of local accesses. Table 3 shows the end-to-end performance
of a Group-By aggregation of various selectivity and cardinality
using local memory, remote memory, and query plan shipping via
Substrait [2] (see Figure 3). Shipping includes the time for shipping
the query plan, the query execution, and the serialization of query
results. Table local is the ideal speedup if the table is placed in the
local NUMA node. As one would expect, performance is best when
the table is local, outperforming remote access anywhere from a
few percent to over 90%, depending on data characteristics.

NUMA Zone 3NUMA Zone 1

query

plan

Arrow Table

116 GB

parser, 
plan 

generator

schema

chunked 
array

array

Parquet file for TPC-H 
table, e.g., lineitem 

(SF=100) 22 GB

in-memory 
Arrow Table

results 
Arrow 
stream

field

Figure 3: We simulate the Arrow table on a remote node
(NUMA zone 3) and ship the query plan via Substrait.

Table 3: Remote Access vs. Near Data Processing in DuckDB

sel. groups
end-to-end time speedup over

table location plan remote by
remote local ship local ship

25% 1 4.2 s 3.5 s 3.6 s 1.2× 1.2×
25% 1 k 4.2 s 3.6 s 3.6 s 1.2× 1.2×
25% 250 k 7.1 s 6.8 s 9.9 s 1.0× 0.7×
4% 1 3.4 s 1.8 s 1.8 s 1.9× 1.9×
4% 1 k 3.4 s 1.8 s 1.8 s 1.9× 1.9×
4% 250 k 3.9 s 2.4 s 2.8 s 1.6× 1.4×
4% 2.5 M 4.6 s 2.8 s 14.9 s 1.6× 0.3×

In most cases, the plan shipping is only slightly slower than a
purely local execution, outperforming remote access by 1.2-1.9×,
with the decrease in performance due to the costs of shipping and
(de-)serialization of plans and query results. However when the
cardinality grows, the performance of shipping the query plan
decreases, at the extreme, degrading below simply accessing the
data remotely due to the high cost of (de-)serialization of the results.

This experiment demonstrates that shipping compute in the
form of entire query plans is possible and can achieve performance
equivalent to data-local execution.

6 Conclusions
In this paper, we set out to summarize and systematize the prob-
lems introduced by far memory and the associated solutions to
integrating it. If even a handful of the wide variety of proposed
systems and applications succeed, system designers will require
many different techniques for dealing with their challenges. Moving
data to code has long been the primary target of researchers, but
we believe that function shipping should also be a major focus of
systems researchers, and we present a motivational example using
a modern workload. These complex systems will need a variety of
solutions, some repurposed from the past and some entirely new.

References
[1] 2023. wrBench: Comparing Cache Architectures and Coherency Protocols on

ARMv8 Many-Core Systems. Journal of Computer Science and Technology 38, 6



Move your code, not your data HCDS ’25, March 30, 2025, Rotterdam, Netherlands

(2023), 1323–1338.
[2] Substrait Management Commitee 2025. Substrait: Cross-Language Serialization

for Relational Algebra. Substrait Management Commitee. https://substrait.io
[3] Advanced Micro Devices. 2023. AMD EPYC 9684X. https://www.amd.com/en/

products/processors/server/epyc/4th-generation-9004-and-8004-series/amd-
epyc-9684x.html

[4] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
2017. Attack of the killer microseconds. Commun. ACM 60, 4 (mar 2017), 48–54.
doi:10.1145/3015146

[5] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. PerMA-bench: bench-
marking persistent memory access. Proc. VLDB Endow. 15, 11 (jul 2022), 2463–2476.
doi:10.14778/3551793.3551807

[6] Daniel S. Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish Shah,
Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D. Hill, and Ricardo
Bianchini. 2023. Design Tradeoffs in CXL-Based Memory Pools for Public Cloud
Platforms. IEEE Micro 43, 2 (mar 2023), 30–38. doi:10.1109/MM.2023.3241586

[7] Nafea Bshara. 2024. AWS Trainium: The Journey for Designing and Optimization
Full Stack ML Hardware. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machinery,
New York, NY, USA, 4. doi:10.1145/3620666.3655592

[8] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoqing Ma. 2018. PolarFS: an ultra-low latency and failure resilient
distributed file system for shared storage cloud database. Proc. VLDB Endow. 11,
12 (aug 2018), 1849–1862. doi:10.14778/3229863.3229872

[9] Albert Cho, Anish Saxena, Moinuddin Qureshi, and Alexandros Daglis. 2023.
A Case for CXL-Centric Server Processors. arXiv:2305.05033 [cs.AR] https:
//arxiv.org/abs/2305.05033

[10] Ho-Ren Chuang, Karim Manaouil, Tong Xing, Antonio Barbalace, Pierre Olivier,
Balvansh Heerekar, and Binoy Ravindran. 2023. Aggregate VM: Why Reduce
or Evict VM’s Resources When You Can Borrow Them From Other Nodes?. In
Proceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York, NY, USA,
469–487. doi:10.1145/3552326.3587452

[11] clamchowder. 2021. Popping the Hood on Golden Cove. https://chipsandcheese.
com/2021/12/02/popping-the-hood-on-golden-cove/

[12] clamchowder. 2023. Core to Core Latency Data on Large Systems. https://
chipsandcheese.com/2023/11/07/core-to-core-latency-data-on-large-systems/

[13] clamchowder. 2023. Sapphire Rapids: Golden Cove Hits Servers. https:
//chipsandcheese.com/2023/03/12/a-peek-at-sapphire-rapids/

[14] Peter Desnoyers, Ian Adams, Tyler Estro, Anshul Gandhi, Geoff Kuenning, Mike
Mesnier, Carl Waldspurger, Avani Wildani, and Erez Zadok. 2023. Persistent
Memory Research in the Post-Optane Era. In Proceedings of the 1st Workshop
on Disruptive Memory Systems (Koblenz, Germany) (DIMES ’23). Association for
Computing Machinery, New York, NY, USA, 23–30. doi:10.1145/3609308.3625268

[15] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostić. 2019.
Make the Most out of Last Level Cache in Intel Processors. In Proceedings of
the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 8, 17 pages.
doi:10.1145/3302424.3303977

[16] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney,
and Kurt Keutzer. 2024. AI and Memory Wall. IEEE Micro 44, 3 (May 2024), 33–39.
doi:10.1109/MM.2024.3373763

[17] Michael Giardino, Kshitij Doshi, and Bonnie Ferri. 2016. Soft2LM: Application
Guided Heterogeneous Memory Management. In 2016 IEEE International Confer-
ence on Networking, Architecture and Storage (NAS). 1–10. doi:10.1109/NAS.2016.
7549421

[18] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 649–667. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/gu

[19] Minho Ha, Junhee Ryu, Jungmin Choi, Kwangjin Ko, Sunwoong Kim, Sungwoo
Hyun, Donguk Moon, Byungil Koh, Hokyoon Lee, Myoungseo Kim, Hoshik Kim,
and Kyoung Park. 2023. Dynamic Capacity Service for Improving CXL Pooled
Memory Efficiency. IEEE Micro 43, 2 (2023), 39–47. doi:10.1109/MM.2023.3237756

[20] David Heinmeier Hansson. 2022. Why we’re leaving the cloud. https://world.hey.
com/dhh/why-we-re-leaving-the-cloud-654b47e0

[21] Jon Hermes, Josh Minor, Minjun Wu, Adarsh Patil, and Eric Van Hensbergen.
2024. UDON: A case for offloading to general purpose compute on CXL memory.
arXiv:2404.02868 [cs.ET] https://arxiv.org/abs/2404.02868

[22] Jason Howard. 2023. The First Direct Mesh-to-Mesh Photonic Fabric. In 2023
IEEE Hot Chips 35 Symposium (HCS). IEEE Computer Society, Los Alamitos, CA,
USA, 1–17. doi:10.1109/HCS59251.2023.10254719

[23] Akanksha Jain, Hannah Lin, Carlos Villavieja, Baris Kasikci, Chris Kennelly,
Milad Hashemi, and Parthasarathy Ranganathan. 2024. Limoncello: Prefetchers
for Scale. In Proceedings of the 29th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, Volume 3 (La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New York, NY,
USA, 577–590. doi:10.1145/3620666.3651373

[24] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon,
and Myoungsoo Jung. 2023. CXL-ANNS: Software-Hardware Collaborative
Memory Disaggregation and Computation for Billion-Scale Approximate Nearest
Neighbor Search. In 2023 USENIX Annual Technical Conference (USENIX ATC 23).
USENIX Association, Boston, MA, 585–600. https://www.usenix.org/conference/
atc23/presentation/jang

[25] Kimberly Keeton. 2015. The Machine: An Architecture for Memory-centric
Computing. In Proceedings of the 5th International Workshop on Runtime and
Operating Systems for Supercomputers (Portland, OR, USA) (ROSS ’15). Association
for Computing Machinery, New York, NY, USA, Article 1, 1 pages. doi:10.1145/
2768405.2768406

[26] Linux kernel development community. 2024. Documentation for NUMA Balanc-
ing. https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#
numa-balancing

[27] Kanguk Kim, Youngwoo Son, Hoin Ryu, Byunghyun Lee, Jooncheol Kim, Hyunsu
Shin, Joonyoung Kang, Jihun Kim, Shinwoo Jeong, Kyosuk Chae, Dongkak
Lee, Ilwoo Jung, Yongkwan Kim, Boyoung Song, Jeonghoon Oh, Jungwoo
Song, Seguen Park, Keumjoo Lee, Hyodong Ban, Jiyoung Kim, and Jooyoung
Lee. 2023. 14nm DRAM Development and Manufacturing. In 2023 IEEE Sym-
posium on VLSI Technology and Circuits (VLSI Technology and Circuits). 1–2.
doi:10.23919/VLSITechnologyandCir57934.2023.10185314

[28] Vamsee Reddy Kommareddy, Simon David Hammond, Clayton Hughes, Ahmad
Samih, and Amro Awad. 2019. Page migration support for disaggregated non-
volatile memories. In Proceedings of the International Symposium on Memory
Systems (Washington, District of Columbia, USA) (MEMSYS ’19). Association
for Computing Machinery, New York, NY, USA, 417–427. doi:10.1145/3357526.
3357543

[29] Georgios K. Konstadinidis, Hongping Penny Li, Francis Schumacher, Venkat
Krishnaswamy, Hoyeol Cho, Sudesna Dash, Robert P. Masleid, Chaoyang Zheng,
Yuanjung David Lin, Paul Loewenstein, Heechoul Park, Vijay Srinivasan, Dawei
Huang, Changku Hwang, Wenjay Hsu, Curtis McAllister, Jeff Brooks, Ha Pham,
Sebastian Turullols, Yifan Yanggong, Robert Golla, Alan P. Smith, and Ali Vahid-
safa. 2016. SPARC M7: A 20 nm 32-Core 64 MB L3 Cache Processor. IEEE Journal
of Solid-State Circuits 51, 1 (2016), 79–91. doi:10.1109/JSSC.2015.2456902

[30] Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023. Func-
tion as a Function. In Proceedings of the 2023 ACM Symposium on Cloud Computing
(Santa Cruz, CA, USA) (SoCC ’23). Association for Computing Machinery, New
York, NY, USA, 81–92. doi:10.1145/3620678.3624648

[31] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 317–330.
doi:10.1145/3297858.3304053

[32] Mark LaPedus. 2019. DRAM Scaling Challenges Grow. Semicondutor Engineering.
https://semiengineering.com/dram-scaling-challenges-grow/

[33] Donghun Lee, Thomas Willhalm, Minseon Ahn, Suprasad Mutalik Desai, Daniel
Booss, Navneet Singh, Daniel Ritter, Jungmin Kim, and Oliver Rebholz. 2023.
Elastic Use of Far Memory for In-Memory Database Management Systems. In
Proceedings of the 19th International Workshop on Data Management on New
Hardware (Seattle, WA, USA) (DaMoN ’23). Association for ComputingMachinery,
New York, NY, USA, 35–43. doi:10.1145/3592980.3595311

[34] Philip Levis, Kun Lin, and Amy Tai. 2023. A Case Against CXL Memory Pooling.
In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks (Cambridge,
MA, USA) (HotNets ’23). Association for Computing Machinery, New York, NY,
USA, 18–24. doi:10.1145/3626111.3628195

[35] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Com-
puting Machinery, New York, NY, USA, 574–587. doi:10.1145/3575693.3578835

[36] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and Dongsu Han. 2021. To-
wards timeout-less transport in commodity datacenter networks. In Proceedings
of the Sixteenth European Conference on Computer Systems (Online Event, United
Kingdom) (EuroSys ’21). Association for Computing Machinery, New York, NY,
USA, 33–48. doi:10.1145/3447786.3456227

[37] Changyuan Lin andMohammad Shahrad. 2024. Bridging the Sustainability Gap in
Serverless through Observability and Carbon-Aware Pricing. In Proceedings of the
3ndWorkshop on Sustainable Computer Systems (Santa Cruz, USA) (HotCarbon ’24).
Association for Computing Machinery, New York, NY, USA. https://hotcarbon.
org/assets/2024/pdf/hotcarbon24-final164.pdf

https://substrait.io
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9684x.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9684x.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series/amd-epyc-9684x.html
https://doi.org/10.1145/3015146
https://doi.org/10.14778/3551793.3551807
https://doi.org/10.1109/MM.2023.3241586
https://doi.org/10.1145/3620666.3655592
https://doi.org/10.14778/3229863.3229872
https://arxiv.org/abs/2305.05033
https://arxiv.org/abs/2305.05033
https://arxiv.org/abs/2305.05033
https://doi.org/10.1145/3552326.3587452
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://chipsandcheese.com/2023/11/07/core-to-core-latency-data-on-large-systems/
https://chipsandcheese.com/2023/11/07/core-to-core-latency-data-on-large-systems/
https://chipsandcheese.com/2023/03/12/a-peek-at-sapphire-rapids/
https://chipsandcheese.com/2023/03/12/a-peek-at-sapphire-rapids/
https://doi.org/10.1145/3609308.3625268
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1109/MM.2024.3373763
https://doi.org/10.1109/NAS.2016.7549421
https://doi.org/10.1109/NAS.2016.7549421
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1109/MM.2023.3237756
https://world.hey.com/dhh/why-we-re-leaving-the-cloud-654b47e0
https://world.hey.com/dhh/why-we-re-leaving-the-cloud-654b47e0
https://arxiv.org/abs/2404.02868
https://arxiv.org/abs/2404.02868
https://doi.org/10.1109/HCS59251.2023.10254719
https://doi.org/10.1145/3620666.3651373
https://www.usenix.org/conference/atc23/presentation/jang
https://www.usenix.org/conference/atc23/presentation/jang
https://doi.org/10.1145/2768405.2768406
https://doi.org/10.1145/2768405.2768406
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#numa-balancing
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#numa-balancing
https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185314
https://doi.org/10.1145/3357526.3357543
https://doi.org/10.1145/3357526.3357543
https://doi.org/10.1109/JSSC.2015.2456902
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3297858.3304053
https://semiengineering.com/dram-scaling-challenges-grow/
https://doi.org/10.1145/3592980.3595311
https://doi.org/10.1145/3626111.3628195
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3447786.3456227
https://hotcarbon.org/assets/2024/pdf/hotcarbon24-final164.pdf
https://hotcarbon.org/assets/2024/pdf/hotcarbon24-final164.pdf


HCDS ’25, March 30, 2025, Rotterdam, Netherlands Michael Giardino, Siddharth Gupta, Lukas Humbel, Rene Mueller, and Anirban Nag

[38] Linux Kernel Documentation. 2024. Memory Hot(Un)Plug (6.10.0-rc6). https:
//docs.kernel.org/admin-guide/mm/memory-hotplug.html

[39] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocber-
ber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer,
and Babak Falsafi. 2012. Scale-out processors. SIGARCH Comput. Archit. News
40, 3 (jun 2012), 500–511. doi:10.1145/2366231.2337217

[40] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai. 2017.
Imbalance in the cloud: An analysis on Alibaba cluster trace. In 2017 IEEE Inter-
national Conference on Big Data (Big Data). 2884–2892. doi:10.1109/BigData.2017.
8258257

[41] Jialun Lyu, Jaylen Wang, Kali Frost, Chaojie Zhang, Celine Irvene, Esha Choukse,
Rodrigo Fonseca, Ricardo Bianchini, Fiodar Kazhamiaka, and Daniel S. Berger.
2023. Myths and Misconceptions Around Reducing Carbon Embedded in Cloud
Platforms. In Proceedings of the 2nd Workshop on Sustainable Computer Systems
(Boston, MA, USA) (HotCarbon ’23). Association for Computing Machinery, New
York, NY, USA, Article 7, 7 pages. doi:10.1145/3604930.3605717

[42] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled
Tiered-Memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Lanuages and Operating Systems, Volume 3
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 742–755. doi:10.1145/3582016.3582063

[43] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981–1984. doi:10.1145/3299869.3320212

[44] John C Reynolds. 1993. The discoveries of continuations. Lisp and symbolic
computation 6 (1993), 233–247. doi:10.1007/BF01019459

[45] Daniel Robinson. 2020. Optane Persistent Memory vs Optane SSDs - confused?
Then read on. https://blocksandfiles.com/2020/10/08/optane-persistent-memory-
vs-optane-ssds-confused-then-read-on/

[46] Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu, HassanWassel,
Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind Krishnamurthy, David E. Culler,
and Henry M. Levy. 2023. A Cloud-Scale Characterization of Remote Procedure
Calls. In Proceedings of the 29th Symposium on Operating Systems Principles
(Koblenz, Germany) (SOSP ’23). Association for Computing Machinery, New York,
NY, USA, 498–514. doi:10.1145/3600006.3613156

[47] Margo Seltzer, Virendra Marathe, and Steve Byan. 2018. An NVM Carol: Visions
of NVM Past, Present, and Future. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). 15–23. doi:10.1109/ICDE.2018.00011

[48] Rathijit Sen and Karthik Ramachandra. 2018. Characterizing Resource Sensitivity
of Database Workloads. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 657–669. doi:10.1109/HPCA.2018.00062

[49] Amna Shahab, Mingcan Zhu, Artemiy Margaritov, and Boris Grot. 2018. Farewell
My Shared LLC! A Case for Private Die-Stacked DRAM Caches for Servers.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 559–572. doi:10.1109/MICRO.2018.00052

[50] Debendra Das Sharma and Ishwar Agarwal. 2022. Compute Express Link 3.0
Standard. Technical Report.

[51] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and Josep Torrellas. 2023.
𝜇Manycore: A Cloud-Native CPU for Tail at Scale. In Proceedings of the 50th
Annual International Symposium on Computer Architecture (Orlando, FL, USA)
(ISCA ’23). Association for Computing Machinery, New York, NY, USA, Article
33, 15 pages. doi:10.1145/3579371.3589068

[52] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao Xiang,
Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, Cheng Chen, Hui Zhang,
Fei Liu, Shuai Zhang, Xiaoning Ding, and Jianjun Chen. 2024. Exploring Perfor-
mance and Cost Optimization with ASIC-Based CXL Memory. In Proceedings of
the Nineteenth European Conference on Computer Systems (Athens, Greece) (Eu-
roSys ’24). Association for Computing Machinery, New York, NY, USA, 818–833.
doi:10.1145/3627703.3650061

[53] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: the next genera-
tion. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New
York, NY, USA, Article 30, 14 pages. doi:10.1145/3342195.3387517

[54] Amanda Tomlinson and George Porter. 2023. Something Old, Something New:
Extending the Life of CPUs in Datacenters. SIGENERGY Energy Inform. Rev. 3, 3
(Oct. 2023), 59–63. doi:10.1145/3630614.3630625

[55] Emmett Witchel. 2024. Challenges and Opportunities for Systems Using CXL
Memory. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New York, NY,
USA, 2. doi:10.1145/3620666.3655590

[56] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: Implications
of the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.
https://dl.acm.org/doi/pdf/10.1145/216585.216588

[57] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
Page Management for Tiered Memory Systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 331–345. doi:10.1145/3297858.
3304024

[58] Wen Zhang, Scott Shenker, and Irene Zhang. 2020. Persistent State Machines for
Recoverable In-memory Storage Systems with NVRam. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 20). USENIX Associa-
tion, 1029–1046. https://www.usenix.org/conference/osdi20/presentation/zhang-
wen

https://docs.kernel.org/admin-guide/mm/memory-hotplug.html
https://docs.kernel.org/admin-guide/mm/memory-hotplug.html
https://doi.org/10.1145/2366231.2337217
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.1145/3604930.3605717
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1007/BF01019459
https://blocksandfiles.com/2020/10/08/optane-persistent-memory-vs-optane-ssds-confused-then-read-on/
https://blocksandfiles.com/2020/10/08/optane-persistent-memory-vs-optane-ssds-confused-then-read-on/
https://doi.org/10.1145/3600006.3613156
https://doi.org/10.1109/ICDE.2018.00011
https://doi.org/10.1109/HPCA.2018.00062
https://doi.org/10.1109/MICRO.2018.00052
https://doi.org/10.1145/3579371.3589068
https://doi.org/10.1145/3627703.3650061
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3630614.3630625
https://doi.org/10.1145/3620666.3655590
https://dl.acm.org/doi/pdf/10.1145/216585.216588
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024
https://www.usenix.org/conference/osdi20/presentation/zhang-wen
https://www.usenix.org/conference/osdi20/presentation/zhang-wen

	Abstract
	1 Introduction
	2 Background
	2.1 Enabling Technologies
	2.2 Terminology

	3 Far Memory Challenges
	3.1 Hiding latency
	3.2 Sharing
	3.3 Failure
	3.4 Costs

	4 Taxonomy
	5 Function Shipping
	5.1 Function Shipping Cost
	5.2 Shipping Query Plans

	6 Conclusions
	References

