
Soft2LM: Application Guided Heterogeneous
Memory Management

Michael Giardino
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia

Email: giardino@gatech.edu

Kshitij Doshi
Intel Corporation

Chandler, AZ
Email: kshitij.a.doshi@intel.com

Bonnie Ferri
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia

Email: bonnie.ferri@ece.gatech.edu

Abstract—This paper introduces a software policy for memory
management in heterogeneous memory systems in order to
improve the trade-offs between performance and power con-
sumption, while attempting to make the best use of different
characteristics of the underlying memory technologies. In this
policy, the operating system and the application co-schedule page
management in order to make informed decisions about page
allocation and migration. Software-Controlled 2-Level Memory
(Soft2LM) is a hardware-agnostic approach for efficient usage of
heterogeneous memory that allows for region-based allocations,
migrations, and application advice. We include analysis of the
access characteristics of the PARSEC 3.0 suite of benchmarks,
both as motivation for software-guided intelligent page placement
as well as for understanding where application advice can make
a difference. Our evaluation running PARSEC on our Soft2LM
Linux kernel shows an average 4.7x improvement over com-
parable RAMDISK-based swapping. Even when migrating 100
and 1000 pages per second between regions, Soft2LM performs
comparably to a stock system with twice the available DRAM,
showing a 1.8% and 0.7% improvement, respectively.

I. INTRODUCTION

Heterogeneous memories, byte addressable storage elements
with non-uniform characteristics populating a shared address
space, are on the horizon. Among these, storage-class memo-
ries (SCM) [1] are being discussed as exciting candidates for
augmenting DRAM in servers due to their characteristics of
large-capacity, persistence, and accessibility at lower latency
and higher bandwidth in relation to high performance block
storage devices.

Since they offer both persistence and high capacity, and
allow much faster direct access to content in comparison to
that allowed by disks, it is very attractive to use them to elim-
inate I/O stalls from programs. However, due to technology
differences between SCM and DDR3/4, they are expected to
exhibit measurably higher and non-uniform latency, and vari-
able, lesser bandwidth, in comparison to conventional volatile
memory. The ideal combination from software standpoint is
to hold frequently accessed data in DRAM, and use the SCM
memory that shares a program’s address space, to support the
long tailed references to the remainder (which would have
otherwise missed the DRAM page cache and generated disk
requests). Intelligent placement of rarely touched data in SCM
may also be used to save power, even if a program has a

sufficiently small total footprint that available DRAM can
accommodate.

To benefit from this opportunity to run programs without I/O
stalls and with reduced power consumption, while simultane-
ously achieving high performance, it is critical to ensure that a
dataset is hosted in DRAM while it is popular and offloaded to
SCM as its popularity declines, and then eventually moved out
of the memory tier altogether. Processor caches achieve such
dynamic placement directly in hardware–usually at cacheline
granularities; operating systems, language runtimes, virtual
machines, and application software need to perform a similar
dynamic placement, except where hardware/firmware based
mechanisms are available for managing DRAM as a memory-
side cache in front of SCM. Even when hardware based
“transparent” caching of SCM-based content in DRAM is
available, it is generally difficult to tailor the caching policy
to capture a warm subset of data whose dynamic footprint
exceeds the capacity of processor caches.

Software based policies that attempt to maximize data
residency in a performance tier may be divided into three
classes: at one extreme, the operating system makes the
decision of what to evict (i.e., similar to conventional paging),
at another, it is the application software that explicitly directs
the operating system in placement and displacement decisions
(i.e., similar to the manner in which a database performs its
record buffering). A hybrid policy might keep some control
in the operating system so that applications are freed from
the minutiae of managing the memory resources, but are able
to work in an enlightened way together with the operating
system to avert the large majority of page faults from untimely
evictions of warm data. The contribution of this paper falls
into the third category, where a number of nuances need to
be addressed to streamline the process of reclaiming memory
from one use and assigning it to another.

In particular, the paper deals with the problem of co-
scheduling page management activities between application
software and operating system software. One challenge is to
ensure that data that is currently hosted in a DRAM page
is moved over to an SCM page without requiring expensive
synchronization over TLBs. Conventional “lazy TLB shoot-
down” approaches are less effective since reassignment of



pageframes between SCM and DRAM needs to be performed
in a timely manner. A consideration that applies in a dis-
criminating reassignment is only the pages that are modified
since they were given DRAM placement need to have their
data migrated to SCM, where as for clean data, their SCM
copy can be substituted at the same virtual address without
such data migration. Another consideration that applies is
the cost of data migration: it is not prudent to promote data
from an SCM range into DRAM placement unless there is
convincing evidence that the data will be used frequently
enough to justify (amortize) the cost of copying. Applications
may further make static choices: for instance, write-only or
write-mostly ranges such as file system journaling pages or
data logging pages benefit scarcely from DRAM placement;
and data that is updated but is temporary (e.g., Java nurseries)
may not benefit sufficiently from SCM placement; such pages
need to be managed with input from the application. On the
other hand, an application’s behavior may not be sufficiently
predictable, so that from one phase of program behavior to
another, it is not prudent to associate either an SCM page or a
DRAM page continuously with a given virtual address. Thus a
collaborative policy in which applications make their intent as
transparent as possible while a memory management system
supports the intent but protects against continued deviation
from it is desirable and this paper proposes such a scheme.

The paper proposes a page life cycle that draws upon current
page life cycle in Linux 3.x version, but extends it for flexible
application of decisions about when to migrate and when
to flush TLBs globally. Because large capacity SCM [Intel
3DXP] is not yet available, we analyze memory access traces
and statistics under a number of memory intensive applications
to explore the options noted above.

• We present a hardware agnostic approach for ef-
ficient usage of heterogeneous memory. We term
the approach “Software Controlled 2-level Memory”
(Soft2LM). Soft2LM is built on a 3.x Linux kernel, and
it allows for region-based allocations, migrations, and
application advice.

• As part of Soft2LM, we built an extensible API that
allows applications to describe their memory usage char-
acteristics to the operating system, in page-granular units,
through which the operating system receives and imple-
ments responsive page placement and data migration.

• In our evaluation, we execute the PARSEC suite using
virtualization in order to have control over the hardware
available to the OS and show that the overhead of
comprehensive hybrid page management requires little
overhead even when the memory system is heavily taxed.
The implementation also significantly outperforms low-
latency swapping to a RAMDISK, improving over a
similarly sized RAMDISK by 4.7x.

• Using the memory footprint and access statistics collected
under PARSEC, we establish that Soft2LM’s cooper-
ative memory management effectively blends the sup-
plied usage guidance into operating system’s memory

management, and that this efficiently counteracts the
oversubscription of DRAM by an application.

II. BACKGROUND AND RELATED WORK

Owing to its high capacity, low latency, and persistence,
SCM can be integrated into current machine organizations in
a multiplicity of ways: for example, as memory, as storage,
as a hardware or software managed cache for either, and
various combinations thereof. A consensus is growing around
what is known as a hybrid memory system [2]–[4]. In these
systems, NVM is logically inserted into the memory hierarchy
between DRAM and SSD, where it used as a transparent
hardware-managed disk cache or as a shared-address space
main memory, managed by the operating system’s memory
manager. This paper extends the DRAM-as-a-cache for SCM
usage in two ways: it implements an efficient type of memory-
to-memory paging in software, and in doing so, it also assigns
to application software a steering role so that data is promoted
or demoted between DRAM and SCM based on a combination
of application input and application reference behaviors.

As with mixed SCM and DRAM arrangements, memory
access latencies and bandwidths also vary in DRAM-only
NUMA designs in which different latency and bandwidth
characteristics apply for intra vs inter domain access [5].
In general, balanced memory population employed in most
hardware systems creates equal capacity NUMA domains
where as the capacity of an SCM tier is expected to be
significantly greater than that of a DRAM tier. Inter-domain
NUMA access latencies are expected to be insiginificant in
comparison to inter-tier latencies in heterogenous memory.
These asymmetries, combined with SCM tier’s persistence and
power characteristics encourage a more informed scheduling
of memory on the basis of joint participation by applications
and the runtimes that host them in heterogenous memory.
Shin et al expand on existing NUMA architecture in the
Linux kernel, assigning NVM and DRAM to different NUMA
node IDs, allowing the operating system to use existing
NUMA migration to move pages between NVM and DRAM
[6]. Adjacent physical pages are allocated into groups and
to determine hotness of data, they use unused bits in the
page table entry to store a weighted history of the pages’
dirty bit. Their results show that even using separate NUMA
domains, the overhead of migration in total execution time
is only 1.14%, and they get a 19-36% decrease in energy
consumption. We bypassed separate NUMA nodes, further
reducing the codepath of different regions of memory. This
also leaves NUMA available to build onto a heterogeneous
system in the conventional way.

Lee describes a technique for using hybrid memory man-
agement that uses a hypervisor to scan and extract page access
histories for tasks in guest virtual machines [7]. Based on
these, the hypervisor can perform intra-VM and inter-VM
allocation of capacity in on-chip stacked DRAM modules,
so that relatively expensive off-chip DRAM accesses can be
minimized for frequently referenced pages. Our technique is
similar but does not require a hypervisor as an intermediary,

2



and therefore generalizes to single as well as multitenant
execution. Hardware based techniques for managing stacked
DRAM modules are described by Sim [8] and Chou [9]. Sim
proposes a Part-of-Memory (PoM) architecture in which a
page activity tracker guides hardware in remapping hot data to
on-chip tier [8] , while Chou proposes a CAche-like MEmory
Organization (CAMEO) for migrating referenced cachelines
into on-chip tier while furnishing the total capacity of on-chip
and off-chip DRAM to software [9] . A common characteristic
of both approaches is that the latency and capacity of the
stacked DRAM are comparable to those of last level caches,
making the hardware approaches more fitting. Our software-
based approach makes it possible for applications to benefit
from both the larger capacity of the near tier and persistence
of the far tier as well as the ability to draw upon a long
history of page access patterns to make informed decisions
about allocation and placement.

Intelligent page placement is also explored in the context
of hybrid systems comprising CPUs and GPUs by Agarwal
[10] and Li [11]. Agarwal developed bandwidth-aware page
placement driven by both compiler extracted insights and
explicit hints from software is used to show 35% improve-
ments in GPU performance [10]. Their experiments show a
marked improvement, but because hardware amenible to their
algorithm was not available, they were forced to conduct
their experiments in the simulator. Results from Li show
that in comparison to a hardware managed approach, static
assignment of hot data to on-chip DRAM doubles performance
and cuts power consumption in half [11].

For hybrid memory systems comprising off-chip DRAM
and off-chip SCM modules, a hardware memory controller
is proposed by Ramos [12]; the controller monitors access
patterns and remaps pages, while maintaining its own address
translation table to keep such data movement transparent
to application and operating system. Using simulation for
such hybrid systems, Meza et al show power consumption
and performance improvements under a hardware-based but
software-assisted blended memory management approach –
with significant gains resulting from displacing a hard disk
drive with SCM, and further gains arising from eliminating
software overhead of file system calls [13] . This is in line
with our findings–that in lieu of using SCM as a faster
paging device, it is a better choice to eliminate the I/O and
serialization overheads by using SCM as extended memory
into which colder virtual addresses are mapped. Using trace
driven simulation, Seok et al conclude that it is imperative
to reduce write accesses and energy consumption by taking
into account the non-uniform latency and endurance of SCM
[14]. Others have examined low-level hardware modifications
to improve performance, reduce power consumption, and im-
prove device lifetime: Yoon explored row-buffer aware caching
policies [15], Qureshi optimized DRAM cache architecture for
latency, even at the expense of hit-rate, by both reducing the
associativity and streaming data and tag in a single data burst,
and introduced a memory access predictor [16] while Meza
added a small cache for recently used metadata in DRAM [17].

The approach proposed in this paper is driven from a similar
perspective but different vision: that due to their non-uniform
power, latency, and bandwidth characteristics, SCM accesses
need to be reduced to a minimum and that such reduction can
be pursued sooner with software approaches. while minimal
hardware extensions (e.g., in data access instrumentation) that
can assist software are also identified sooner as a side effect.

In order to enable software-guidance of memory access
patterns, madvise() is a system call that allows programs
to advise the kernel as to the anticipated access characteristics
of a given range of virtual memory [18]. This advice can be
used by the kernel when prefetching data and freeing pages.
For example, a program can specify MADV_SEQUENTIAL,
which informs the kernel that it can aggressively read-ahead
and discard the used pages when they are finished. When
dealing with heterogeneous memories, the decisions the kernel
makes have many potential benefits but it becomes a more
complex decision. Instead of having a single piece of advice,
we implement a set of flags that can, like GFP flags, be
combined to describe multiple characteristics of a page.

Jantz et al developed a framework to “color” pages in order
to provide application guidance to the operating system for
physical page placement [19]. Using trays to organize and
place data on specific physical DRAM pages based upon
application guidance showed 55% power improvements on a
synthetic benchmark. Our kernel API is similar but provides
additional options for applications to identify data in hetero-
geneous memory systems.
jemalloc is a scalable concurrent malloc replacement

which uses isolated regions of memory called arenas to reduce
lock contention in CMP systems. It also uses madvise to
release pages back to the system. Building upon jemalloc,
memkind extends the well-known application allocation API
(malloc, free, etc.) with the kind of memory requested
[20]. By using the arenas of jemalloc, memkind is able to
allocate memory of the desired type in a specific region of
memory corresponding to the requested kind.

III. SYSTEM OVERVIEW

We are proposing two additions to page management: the
ability to guide page placement and monitor page usage, and
a mechanism for transparent page movement.

A. Application Guidance

Application guidance of page placement requires an API
that allows for anticipated use of memory allocations to be
relayed to the operating system. This differs from madvise
in that madvise is called after the mapping has been made.
Our modifications pass information to the operating system at
allocation time. We propose the needed information be passed
to the kernel as additional flags in the existing mmap() call.
Initially, the modifications are requests for specific regions
of memory, MAP_PREF_NVM and MAP_PREF_DRAM, which
map to the modifications in page allocation flags outlined in
table I and discussed below. There is a lot of potential for

3



TABLE I
SOFTWARE ADVISE FLAGS FOR PAGE ALLOCATION USING MMAP()

Basic, fail only with ENOMEM
MAP_PREF_NVM prefer NVM but accept DRAM
MAP_PREF_DRAM prefer DRAM but accept NVM

Basic, fail if no required memory is available
MAP_REQ_NVM require NVM
MAP_REQ_DRAM require DRAM

Usage based flags
MAP_READ_ONLY Write triggers protection fault and

reflagging
MAP_READ_MOSTLY Latency consideration in alloca-

tion, try to keep clean (writeback)
MAP_WRITE_MOSTLY Latency insensitive, placement in

far, persistent, and low-energy
memory

MAP_SCRATCHPAD For temporary data, latency and
physical endurance primary con-
cerns

MAP_LATENCY_SENSITIVE Data without specific read and
write patterns, but expected to be
latency sensitive, similar to reg in
C

MAP_REQ_PERSIST Require placement in persistent
memory or force write-through

Anticpated Use Patterns
MAP_HOT Data that is part of a critical set, al-

locate in near memory and attempt
to keep close to CPU

MAP_COLD Data that is expected to be used in-
frequently, allocate in far memory

use-based flags that can then be interpreted by the operating
system based upon it’s available physical memory.

If the application only prefers a specific type of memory
(MAP_PREF_*), then the allocation will only fail if no mem-
ory is available when a page is actually allocated. Because
mmap() uses lazy allocation and only brings in data when
there is a page fault, the available memory may change during
runtime, using preferences (as opposed to requirements) will
prevent future allocations from failing.

If an allocation is required to be in a specific region, then we
can specify that as well. If an application requires persistence
of data (e.g. critical logs) MAP_REQ_NVM will ensure that data
is written to non-volatile memory. If the application needs low-
latency access or is doing heavy but temporary writing (such as
a scratchpad), MAP_REQ_DRAM can be selected. When used in
conjunction with the existing flag MAP_POPULATE, the page
table will be prepopulated and the file will be read-ahead.
This should ensure that, at allocation time, mmap() either
gets the memory in the required region or fails immediately.
If MAP_POPULATE is not used, there is the potential for a
failure when a page fault occurs later.

Ideally, we would like for an application to be able to simply
specify the expected use pattern for a given region of memory
and have the operating system make allocations based upon
the physical memory available, potentially leveraging many
types of heterogeneous memories. Common use patterns could

Fig. 1. A sample epoch showing the large computational period and the
smaller migration-related periods.

be defined by the flags in table I. Read only pages could be
moved into DRAM as needed, but then moved down to NVM
as they cool, and eventually being discarded without writeback
when space is needed. Read-mostly pages, anonymous or file-
backed, when located in DRAM could be occasionally synced
with NVM or disk when dirtied, but otherwise kept close
to the CPU for low latency accesses. Write-mostly regions
of memory can be reserved for those where data is written
consistently but without the need for low-latency reads, and
thus can be allocated in far memory.

Scratchpad regions of memory are those which store tempo-
rary data used for ongoing calculations or processing. These
data may experience a lot of writing and reading and thus
should remain low-latency for both reading and writing, and
in physical memory with high endurance. Latency sensitive
memory regions are those which are known to be accessed fre-
quently but may not have the high write access patterns, thus
endurance is not a factor in selecting the underlying pages. If
data needs to be kept persistent, the require persistence flag
can force all allocations into non-volatile regions of memory,
or in non-heterogeneous memory force write-through.

In addition to specific use patterns, the actual access fre-
quency of the data can be specified as hot or cold. Hot
data is given a preference for near memory, however the
operating system may move data around as it sees fit. Cold
memory is allocated in far memory and will not be moved to
near memory without good reason (e.g. madvise update or
operating system monitoring).

B. Migration Mechanism

The migration mechanism is built upon the Linux’s memory
management. It contains three primary changes to page man-
agement: split physical memory, epoch-based page migration,
and region-aware memory management.

The physical address space is split into two contiguous
regions, each one having its own data structures including
per-order free lists, per-cpu active/inactive LRU lists, and
page caches. Epoch-based migrations are used to amortize
the cost of moving pages and remapping, as well as reduce
thrashing. An epoch, shown in Figure 1, allows the memory
management system to work in stages, collecting performance
and power data during the execution of applications, using this
data to make decisions about page movement, selecting pages
to move, copying the data, and then committing the movement
at the end of the epoch. Performance data is currently collected
by the memory subsystem and performance counters, however
it is expandable to receive data from other sources such as

4



hardware sensors, daemons, as well as an application’s own
knowledge of its performance.

The decisions about data movement are similarly flexible.
The initial implementation uses DRAM capacity thresholds
to trigger a migration of data from near memory to far
memory. The migration mechanism looks on the inactive lists
for pages that can be moved to NVM. It is important to
note that since the second level memory is byte-addressable,
while there may be a performance penalty associated with
the additional latency of second level, there is not the danger
of swapping or having to re-read a page from disk. The
page, once the migration is complete, will be accessible by
applications without suffering a page fault.

If the stall cycles of a CPU begin to increase indicating a
program becoming increasingly memory bound, the migration
mechanism can work in reverse, taking pages from the second-
level memory’s active list, and transparently migrating them to
DRAM. Future work will develop more sophisticated methods
of identifying candidates for migration.

Whenever a shared page is remapped, any CPUs which
have the page mapped must remove from the TLB the cached
entry. In order to ensure that no stale mappings are used,
the remapping CPU issues a TLB shootdown to remove the
stale entry from all processors. This synchonization requires
an inter-processor interrupt (IPI), an expensive operation that
stalls the issuing CPU until all CPUs that receive the IPI
acknowledge that they have removed the TLB entry. Currently,
the actual act of migrating the data occurs right before the
batched remapping, however the system could be expanded to
perform data migrations in the background, staging the moved
pages for a batched remapping at a later point.

C. Page Selection

The migration begins upon the expiration of a high res-
olution timer whose duration can be set via a /proc file.
This timer interrupt places the migration task on a workqueue
and returns. When the workqueue is executed, the selection of
pages begins. The kernel checks the threshold of DRAM as
well as the maximum number of pages to be moved, both
set via /proc filesystem entries, to determine how many
pages need to be moved. Much like vmscan scans LRU
vectors lruvec to age and free inactive pages, the migra-
tion mechanism scans these vectors looking for migration
candidates. These LRU vectors are divided into four LRU
lists: inactive file-backed pages, inactive anonymous pages,
active file-backed pages, and active anonymous pages. In this
order, the page vectors are scanned, first looking for unmapped
pages that are clean and can be migrated asynchronously.
Inactive, clean, unmapped file-backed pages may be discarded
without penalty. However at this time, they are migrated under
the assumption that second-level memory is large enough to
accommodate most if not all of the total memory footprint. In
addition, due to the persistent nature of NVM not requiring
energy to refresh as in DRAM, once data is written back to
NVM, there is no cost in keeping it there indefinitely until
there are capacity constraints.

Fig. 2. Detailed flowchart of migration.

If moving unmapped pages is unsuccessful in getting the
needed number of pages, the list is scanned for mapped, clean
pages. Finally, the list is scanned for dirty pages. It is important
to keep in mind that we are not writing back dirty pages
when we migrate; there is no reason to worry about the page
state when moving them to another active region of main
memory. We are however using the dirty state of the page
as additional information on the activity of the page. Since
vmscan regularly passes through main memory, looking for
pages to free, we can use the fact that it is dirty to assume
that the page may be recently used. If the threshold can be
met by simply moving cold/inactive pages to SCM but keeping
them mapped, the pages are collected and staged to be moved.
If there are not enough pages in the inactive list, pages are
collected from the active lists. Once the candidate pages are
selected, each page is copied to its new location. When the
TLB flush is acknowledged by all nodes, the epoch timer is
reset and the kernel cedes.

D. Migration Process

The detailed process of page migration is shown as Figure
2. It follows closely the migration used in Linux already
by compaction, memory hotplug, and memory failure paths,
however there are significant differences in implementation,
due to different failure modes, allocation sources, and page
selection. Once we have found candidate pages to migrate
from a region, the calling function attempts to allocate a page
in the needed region using a pair of new page flags: GFP_NVM
and GFP_MIGRATE. If we are unsuccessful in allocating a
page, going all the way from page caches, down to the buddy
system, we unwind and try again. Once we obtain a page,
we attempt to unmap the old page. If this is unsuccessful, the

5



destination page is freed and we try to allocate a new page.
Once the page is unmapped, all the data and meta data are
copied to the new page. While rare, it is not impossible for
the data to not copy correctly, so if the data copy fails the
page is remapped, and the destination page freed. If the copy
is successful, the page is remapped, the old page mapping is
cached, and the migration is complete. The caching of old
page mappings is an important addition that will allow for
page aliasing. Since a page, once migrated, is not immediately
freed, but rather cycled through various states of cleanliness
and activity, there is a good chance that at least for a while,
the page may exist in two places at once, that is DRAM and
NVM. This provides an interesting opportunity for an even
more lightweight case of migration and an extremely powerful
use of Soft2LM. Take for example a page that is NVM, but has
been accessed often and thus should be moved to DRAM. If
we have the old page mapping cached and the NVM version is
clean, instead of writing the page back from DRAM, costing
bandwidth and write power, we can simply use the cached
mapping to stitch the page back into the page table, and move
the DRAM version of the page to an inactive list for future
freeing.

IV. EXPERIMENTAL EVALUATION

There are three facets of evaluation to consider. First, given
the added features of enumerated regions of memory and the
modifications of memory management allocation and freeing
mechanisms, we measure the introduced overhead by compar-
ing the performance of a split-memory tiered memory manager
with an unmodified kernel. Second, in order to show the
benefits of a shared address space over block-based storage,
we compare our tiered-memory manager with swap placed on
a DRAM-based ramdisk. The choice of a ramdisk eliminates
any device latency penalty that swapping would normally
introduce, comparing only the costs of the mechanisms. Third,
in order to evaluate the overhead of moving active memory
pages during benchmark execution, we migrate 100 and 1000
pages per second, and compare the results to swapping.

Because our focus is on applications with large data needs,
we chose the PARSEC benchmarking suite that contains 13
varied memory intensive workloads. [21]. Experiments were
carried out in a KVM/qemu-based virtual machine running
on an Intel Haswell i7-4770. Virtual machines with 4 Haswell
cores (2 physical, 4 logical) and 6 GB of DRAM were created
running Debian 8 and a modified version of the Linux kernel
v3.14.39. Since there is no consumer-grade SCM available, our
experimental evaluation was run using two regions of DRAM,
and for the comparison with Linux’s paging, a RAMDISK
used as a swap partition.

A. PARSEC

The PARSEC v3.0 suite was selected for its diverse set of
memory intensive workloads and its use in current research.
All benchmarks were run with 4 threads in an attempt to
reduce the potential for CPU bottlenecks, which would reduce
the stress on the memory system. The native size dataset

TABLE II
MEMORY CHARACTERISTICS OF SIMSMALL AND NATIVE PARSEC

BENCHMARKS

native (MB) simsmall (unique pages)
Benchmark RSS VSZ unique read write inst (M)

blackscholes 611 652 190 188 95 106
bodytrack 31 380 2096 1884 1868 301
canneal 938 1239 10630 10628 10430 607
dedup 1681 2621 6778 6777 4107 764
facesim 302 552 80326 65669 80073 11848
ferret 102 1330 2409 2394 1574 519
fluidanimate 597 642 19039 10176 18851 440
freqmine 705 941 12271 12231 12038 921
raytrace 1124 1444 42920 40261 42602 9519
streamcluster 106 223 419 417 232 420
swaptions 4 229 428 410 192 697
vips 41 361 1997 1588 1184 966
x264 181 310 2546 2440 2361 218

was used for all runs. PARSEC measures the execution time
of the benchmarks by using the Unix time command, giving
us three time values for each run. The real time is the actual
wall time elapsed during the execution of the benchmark, the
user time is the time the process was executing on the kernel,
and the system time is time spent in the kernel.

1) Memory Footprint of native PARSEC benchmarks:
In order to determine the actual memory footprints of the
PARSEC suite, during the runtime of all the benchmarks,
the resident set size (RSS), virtual memory size (VSZ), and
major and minor page faults were sampled every second and
logged to a file. In the output of ps, RSS is the amount of an
application’s memory that is allocated and actually resident in
RAM (i.e. non-swapped) while VSZ is the total size of the
virtual memory including code, shared libraries, and swapped
out portions of code. Table II shows the measured footprint
while running the native size dataset. What is interesting
about these measurements is how a significant portion of them
do not have especially large datasets. For example, swaptions
has only 4MB resident in RAM at any given time, while both
bodytrack and vips have less than 48MB. Further work is
being done to better profile these benchmarks to understand
both their temporal access patterns and implementation of
application guided allocations.

2) PIN-based traces of simsmall PARSEC benchmarks:
In addition to running the full benchmarks on a full system,
we examined the access properties of this benchmark suite.
We used PIN [22] to capture memory traces of the PARSEC
suite. Since the simsmall datasets generated nearly 700
GB of traces, the longest being over 10 B instructions, it
wasn’t possible to directly compare these data to the native
datasets, however, we believe it gives some insight into the
page access patterns, further motivating the need for intelligent
memory management.

The right half of table II shows the unique pages recorded,
and the number of pages read and written, as well as the
number of memory instructions collected for the entire sims-
mall run. Here we can see the differentiation of written and
read pages across all benchmarks. For example, in canneal,

6



Fig. 3. This figure shows the page access histograms for the PARSEC 3.0 suite of benchmarks running the simsmall datasets. Blue indicates page accesses
for reads, while red shows writes. The distribution of page accesses across an extremely large spectrum, as well as the different access patterns motivates the
need for intelligent page placement when dealing with heterogeneous memories. streamcluster has been omitted due to space constraints.

10,630 total unique pages are accessed, with 10,628 read and
10,430 written, so nearly all data is consistently read and
written back. Compare this to fluidanimate or facesim
where nearly every page is written to, but 18% and 46%
of these pages are not read during the execution of the re-
spective applications. These differing access patterns not only
emphasize the advantage of application/programmer guidance
in identifying page use, but also the need for intelligent page
placement.

Figure 3 shows the page access distribution for both reads
and writes. The x-axis consists of bins of access frequency
of a given page on a log scale, while the y-axis shows the
number of pages in each bin. Here again we see much different
access patterns of pages across benchmarks. Benchmarks such
as dedup and fluidanimate have a large number of pages
with very similar access counts, indicated by the sparse but tall
spikes in the graphs, while facesim and blackscholes
have wider distributions of page access frequencies. This
is further evidence of the aid that applications can be in
identifying the access patterns of pages.

Because we wanted to evaluate the entire execution of the
benchmarks instead of taking a computable section of the
memory traces, we were unable to use a full memory system
simulator such as NVMain [23] to estimate the power and per-
formance on different memory topologies. Using energy con-
sumption estimates for upcoming versions of different memory
technologies [24], we calculated the power consumption of the
workloads using the collected memory traces. Figure 4 shows
representative data from streamcluster. This ignores the effect
of the CPU caches, since the same application will access the
same data across all memory technologies, and instead uses the
estimated 2017 joule/bit data found in Moreau for all memory
accesses.

With the exception of DRAM and FeRAM, all the candidate
SCM technologies have asymmetric energy consumption for
reads and writes. With a goal of minimizing energy con-
sumption, DRAM+PCM data uses simple inclusive caching
to service reads through PCRAM and writes on DRAM, both
allowing each technology to operate in its lowest power region

Fig. 4. This shows the energy consumption of different types of memory on
the streamcluster workload relative to DRAM.

as well saving the endurance of writes to PCM.

B. Introduction of Multiple Regions on Performance

Moving to Soft2LM implementation, we will first examine
the partitioning of physical memory in the kernel. In this
section, we show the low cost of an active Soft2LM kernel
in both in overall benchmark runtime as well as time spent
executing kernel code, versus the unmodified Linux kernel
v.3.14.39. The basic split-level memory management system
does not migrate pages, it simply allocates pages in the lowest-
latency region of memory available, and uses vmscan to handle
the aging and removal of pages. Our results, Figure 5 show that
there is very little performance regression by the additional
codepath.

The mean real slowdown with unoptimized code was 1.5%
(0.9857), with the worst regression being 8.4% in streamclus-
ter, and the biggest improvement being 3.6% in dedup. There

7



Fig. 5. Speedup of an unmodified (stock) kernel to the Soft2LM kernel. We
compare the real, user, and system times (described in IV.A) to determine the
cost of longer codepaths.

was a greater slowdown in the kernel time, however we don’t
believe this is a great concern.

Given the added benefits of tiered memory (e.g. lower
power consumption, persistence of data, etc.), there is only
a minor regression in the performance of these memory-
intensive benchmarks. Also, the amount of time spent in
the kernel is very small compared the application. Averaged
across all PARSEC benchmarks on a stock kernel, the CPU
spends 153x more time executing the average application than
in the kernel. In addition, compared to swapping as shown
below, the performance regression is significantly smaller
using Soft2LM. Finally, the current kernel modifications have
not been optimized, and are currently very flexible for testing
purposes.

C. Comparison to swapping to a RAMDISK

Instead of our method, a simpler use of SCM is to use
it is a very fast block-storage device and swap to it. In
this section we examine the benefits of using tiered-memory
over swapping. Because using a traditional SSD/HDD-based
swap device would be an unfair comparison with access time
dominated by disk latency, we chose to create a swap device
in RAM, thus only testing the actual overhead of the paging
mechanism.

Mirroring the layout of tiered memory, we created a 5
GB swap file in DRAM. While we expected much better
performance from tiered memory since the this code does
not require page fault-triggered remapping, our data show
that using the kernel’s paging system drastically degrades
performance, no matter how low the latency of the underlying
device.

We ran the benchmarks on two separate swap configura-
tions, one with 1 GB RAM and 5 GB of RAM disk-backed

Fig. 6. Data comparing the system with two active regions of memory, one
1GB and one 5GB versus a system with 1 GB RAM and 5 GB RAMDISK
backed swap.

swap which matches the layout of the Soft2LM kernel, and
one with 2 GB RAM and 4 GB RAMDISK-backed swap.

The results for a 5 GB swap device are shown as Figure
6. Note that because the speedup over the ramdisk is so large
for some benchmarks, the speedup is displayed using a log y-
axis. The mean and median speedup the real execution time of
benchmarks using tiered-memory over a 5 GB Ramdisk are
4.7x and 1.116x respectively, while the kernel code showed
a 1.53x median speedup. The performance of canneal
was incredibly degraded when swapping, showing a 97.8%
decrease in performance (43x speedup when using Soft2LM).
dedup and fluidanimate both saw speedups of 1.5x and
5.2x respectively. Both of these benchmarks have rather large
memory footprints as shown in Table II Both vips and x264
showed a marked increase in time spent in the kernel (47% and
24% respectively), most likely due to the smaller data sets not
needing to be swapped to disk, thus eliminating the cost of the
swapping portion of the kernel code. It is important to note that
even though there was an increase in kernel latency in these
two benchmarks, the overall performance of the benchmark
was not notably changed. In the remainder of benchmarks,
the time spent in the kernel was significantly decreased when
using two regions of memory versus swapping, with a mean
speedup of 1.5x. Only vips had a 0.8% overall slowdown
due to the higher amount of time spent in kernel code.

Because a number of these benchmarks performed so
badly with a 5 GB swap device, especially canneal and
fluidanimate, we reran the benchmarks with 2 GB main
memory and a 4 GB swapfile to test more modest swapping.
These results are shown in Figure 7. We can see that with
more DRAM, improvement using the tiered-memory manager
is decreased, however there is still on average a 6.3% real time
speedup over swapping, with a 13% speedup in kernel code.

8



Fig. 7. Data comparing the system with two active regions of memory, one
1GB and one 5GB versus a system with 2GB RAM and 4GB RAMDISK
backed swap.

Fig. 8. Data showing the speedup when migrating 100 pages per second
versus swapping.

D. Active Migration with Benchmark

While using two regions of memory shows an improvement
over any amount of swapping, we also wanted to evaluate
heavy migration on top of managing multiple regions of
memory. Further tests were conducted while migrating 100
and 1000 pages every second, not due to memory pressure
based upon a threshold, but to simply maximize the amount
of migrations in order to determine the expected overhead of
significant migrations. By moving pages from DRAM to SCM
even when not under memory pressure, we allow new pages to
be allocated in DRAM, thus implementing a basic system of
page caching: new, hotter pages, are allocated first in DRAM,
then as they cool are moved to SCM. The results of moving
100 pages per second are shown in Figure 8.

Fig. 9. Data showing the speedup when migrating 1000 pages per second
versus swapping.

Migrating 100 pages per second is, given 4 KB pages, 400
KB of migrations per second. Compared to the less aggressive
4 GB swapping case, tiered migration made a slight average
benchmark improvement of 1.8%, while exhibiting a 6.7%
slowdown in kernel code execution. Some benchmarks such
as bodytrack, ferret, and swaptions had significant
improvements in kernel execution times.

Putting even more pressure on the migration system, we
increased the number of pages to migrate per second to 1000.
This very aggressive migration averaged 75,000 pages moved
per benchmark run, which with 4 KB pages is 300 MB moved
over the course of each benchmark. Comparing this migration
number to the memory footprints of the benchmarks, it’s
almost certain that a large number of these applications pages
were moved from under it, with almost zero effects on the
runtime performance of the programs. Because we are forcing
migrations without being under memory pressure, not only are
the inactive lists cleared out, but the active lists are heavily
scanned as well.

The data comparing 1000 page migrations per second versus
a 4 GB swapfile is shown as Figure 9. These results are very
similar to those in the 100 migration case (Figure 8). Even by
increasing the number of migrated pages by 10x, Soft2LM still
improves over this limited swapping by an average of 0.7%,
though spending nearly 6.3% more time in the kernel. The
performance scales well, and when in some cases moving the
entire benchmark’s dataset, performance is still favorably com-
parable to 4GB RAMDISK-based swapping, to say nothing of
its massively better performance against 5 GB swapping.

V. SUMMARY

In this paper, we have demonstrated the feasibility of
a software-controlled memory controller for heterogeneous
memories. We built the system on a modern version of the
Linux kernel, ran it on real hardware, and tested it using a well-

9



respected suite of memory-intensive benchmarks. The system
is robust, having been tested with heavy memory usage as well
as hundreds of thousands migrations. Our results show that the
tiered memory manager by itself is favorably comparable to a
stock kernel, and greatly outperforms the swapping system
even when using a low-latency DRAM-disk as a swapfile.
Results further show that even when forcing the migration of
tens of thousands of pages and hundreds of megabytes over
the course of the benchmark, it still compares favorably to
swapping. This system also introduces an API which allows
higher-level abstractions to actively control the allocation and
migration of pages, opening the door to more intelligent
methods of memory management in both application and
operating system.

ACKNOWLEDGMENT

This work was supported under NSF Grant CMMI 1538877.

REFERENCES

[1] R. F. Freitas, “Storage Class Memory: Technology, Systems and
Applications,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’09. New
York, NY, USA: ACM, 2009, pp. 985–986. [Online]. Available:
http://doi.acm.org/10.1145/1559845.1559961

[2] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High
Performance Main Memory System Using Phase-change Memory
Technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09. New
York, NY, USA: ACM, 2009, pp. 24–33. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555760

[3] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A Hybrid
PRAM and DRAM Main Memory System,” in Proceedings of the
46th Annual Design Automation Conference, ser. DAC ’09. New
York, NY, USA: ACM, 2009, pp. 664–469. [Online]. Available:
http://doi.acm.org/10.1145/1629911.1630086

[4] O. Zilberberg, S. Weiss, and S. Toledo, “Phase-change
Memory: An Architectural Perspective,” ACM Comput. Surv.,
vol. 45, no. 3, pp. 29:1–29:33, Jul. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2480741.2480746

[5] C. Lameter, “NUMA (Non-Uniform Memory Access): An Overview,”
Queue, vol. 11, no. 7, pp. 40:40–40:51, Jul. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2508834.2513149

[6] D.-J. Shin, S. K. Park, S. M. Kim, and K. H. Park, “Adaptive
Page Grouping for Energy Efficiency in Hybrid PRAM-DRAM
Main Memory,” in Proceedings of the 2012 ACM Research
in Applied Computation Symposium, ser. RACS ’12. New
York, NY, USA: ACM, 2012, pp. 395–402. [Online]. Available:
http://doi.acm.org/10.1145/2401603.2401689

[7] M. Lee, V. Gupta, and K. Schwan, “Software-controlled Transparent
Management of Heterogeneous Memory Resources in Virtualized
Systems,” in Proceedings of the ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness, ser. MSPC ’13. New
York, NY, USA: ACM, 2013, pp. 5:1–5:6. [Online]. Available:
http://doi.acm.org/10.1145/2492408.2492416

[8] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent Hardware Management of Stacked DRAM As Part of
Memory,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-47. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 13–24. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.56

[9] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-
Level Memory Organization with Capacity of Main Memory and
Flexibility of Hardware-Managed Cache,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-47. Washington, DC, USA: IEEE Computer Society, 2014, pp.
1–12. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2014.63

[10] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and
S. W. Keckler, “Page Placement Strategies for GPUs Within
Heterogeneous Memory Systems,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New
York, NY, USA: ACM, 2015, pp. 607–618. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694381

[11] C. Li, Y. Yang, H. Dai, S. Yan, F. Mueller, and H. Zhou, “Understanding
the tradeoffs between software-managed vs. hardware-managed caches
in GPUs,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Mar. 2014, pp. 231–242.

[12] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in
Hybrid Memory Systems,” in Proceedings of the International
Conference on Supercomputing, ser. ICS ’11. New York,
NY, USA: ACM, 2011, pp. 85–95. [Online]. Available:
http://doi.acm.org/10.1145/1995896.1995911

[13] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu,
“A Case for Efficient Hardware/Software Cooperative Management
of Storage and Memory,” Proceedings of the Workshop on
Energy-Efficient Design (WEED), Jun. 2013. [Online]. Available:
http://repository.cmu.edu/ece/370

[14] H. Seok, Y. Park, K.-W. Park, and K. H. Park, “Efficient Page Caching
Algorithm with Prediction and Migration for a Hybrid Main Memory,”
SIGAPP Appl. Comput. Rev., vol. 11, no. 4, pp. 38–48, Dec. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2107756.2107760

[15] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu, “Row
buffer locality aware caching policies for hybrid memories,” in 2012
IEEE 30th International Conference on Computer Design (ICCD), Sep.
2012, pp. 337–344.

[16] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in
Architecting DRAM Caches: Outperforming Impractical SRAM-Tags
with a Simple and Practical Design,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-45. Washington, DC, USA: IEEE Computer Society, 2012, pp.
235–246. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2012.30

[17] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM
Cache Management,” IEEE Comput. Archit. Lett., vol. 11, no. 2,
pp. 61–64, Jul. 2012. [Online]. Available: http://dx.doi.org/10.1109/L-
CA.2012.2

[18] L. man page, madvise(2) Linux Programmers’s Manual, GNU, April
2014.

[19] M. R. Jantz, C. Strickland, K. Kumar, M. Dimitrov, and K. A. Doshi,
“A Framework for Application Guidance in Virtual Memory Systems,”
in Proceedings of the 9th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’13. New
York, NY, USA: ACM, 2013, pp. 155–166. [Online]. Available:
http://doi.acm.org/10.1145/2451512.2451543

[20] C. Cantalupo, V. Venkatesan, J. R. Hammond, and S. Hammond, “User
extensible heap manager for heterogeneous memory platforms and
mixed memory policies,” 2015.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implications,”
in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’08. New
York, NY, USA: ACM, 2008, pp. 72–81. [Online]. Available:
http://doi.acm.org/10.1145/1454115.1454128

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’05. New
York, NY, USA: ACM, 2005, pp. 190–200. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065034

[23] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140–143, July 2015.

[24] M. Moreau, “Estimating the energy consumption of emerging
random access memory technologies,” Ph.D. dissertation, Institutt
for elektronikk og telekommunikasjon, 2013. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22566

10


