
Function as a Function
Tom Kuchler

ETH Zurich
Zurich, Switzerland
kuchlert@ethz.ch

Michael Giardino∗
ETH Zurich

Zurich, Switzerland
mgiardino@ethz.ch

Timothy Roscoe
ETH Zurich

Zurich, Switzerland
troscoe@ethz.ch

Ana Klimovic
ETH Zurich

Zurich, Switzerland
aklimovic@ethz.ch

ABSTRACT
Function as a Service (FaaS) and the associated serverless
computing paradigm alleviates users from resourcemanage-
ment and allows cloud platforms to optimize system infras-
tructure under the hood. Despite significant advances, FaaS
infrastructure still leavesmuch room to improve performance
and resource efficiency. We argue that both higher perfor-
mance and resource efficiency are possible — while main-
taining secure isolation — if we are willing to revisit the
FaaS programming model and system software design. We
propose Dandelion, a clean-slate FaaS system that rethinks
the programming model by treating serverless functions as
pure functions, thereby explicitly separating computation
and I/O.This newprogrammingmodel enables a lightweight
yet secure function execution system. It also makes func-
tions more amenable to hardware acceleration and enables
dataflow-aware function orchestration. Our initial prototype
of Dandelion achieves 45× lower tail latency for cold starts
compared to Firecracker. For 95% hot function invocations,
Dandelion achieves 5× higher peak throughput.

CCS CONCEPTS
• Computer systems organization → Cloud comput-
ing; • Software and its engineering → Cloud comput-
ing.

KEYWORDS
serverless, cloud computing, function as a service
ACM Reference Format:
TomKuchler,Michael Giardino, Timothy Roscoe, andAnaKlimovic.
2023. Function as a Function. In ACM Symposium on Cloud Com-
puting (SoCC ’23), October 30–November 1, 2023, Santa Cruz, CA,
∗Currently with Computing Systems Lab, Huawei Technologies, Zurich.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624648

0 500 1000 1500 2000

Requests per Second

0

50

100

150

200

250

300

350

400

P
9
9
.9

 R
e
q
u
e
s
t

L
a
te

n
c
y
 [

m
s
]

Requests

100% hot

99% hot

98% hot

95% hot

90% hot

80% hot

Figure 1: Round-trip tail latency for remote function
execution with Firecracker, varying % hot requests.
Red dotted lines show local bare-metal function exe-
cution latency (horizontal) and peak throughput (ver-
tical).

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3620678.3624648

1 INTRODUCTION
Serverless computing has the potential to become the dom-
inant paradigm of cloud computing [58, 15], making cloud
facilities easier to use and enabling cloud providers to more
transparently optimize performance and energy efficiency
of their infrastructure. With serverless, users develop appli-
cations as compositions of fine-grained functions, which ex-
ecute independently while having access to shared remote
storage. Users invoke functions on-demand and the cloud
platform dynamically allocates the necessary hardware re-
sources to execute them with an appealing pay-for-what-
you-use cost model.

While this model holds promise, the system software in-
frastructure it uses is still rooted in the very different, more
traditional execution model of long-running processes or
virtual machines. Cloud providers typically provide func-
tion isolation by running them inside separate ‘lightweight’
VMs, which still incur significant startup times [62], context
switch overheads [66], and memory duplication [56]. This

https://orcid.org/0009-0002-8091-0313
https://orcid.org/0000-0002-9906-720X
https://orcid.org/0000-0002-8298-1126
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3620678.3624648

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

practice of bundling each function with its own OS leads to
a very general API, and the need to support this makes it
hard for cloud providers to efficiently use their resources to
run functions with low latency.

To quantify the performance and energy efficiency left on
the table by current FaaS system software, we run an exper-
iment using Firecracker [2] as an example of a state-of-the-
art FaaS hypervisor. AWS Lambda uses Firecracker to run
functions inside MicroVMs, which have significantly lower
startup time than traditional VMs. In Figure 1, we measure
round-trip response time for a simple matrix multiplication
function invoked over HTTP and executed on a Firecracker
server running on a 10-core Intel Xeon E5-2640v4. We use a
simple HTTP frontend to relay function invocation requests
to Firecracker, which executes functions in MicroVMs. Al-
though simplified, our setup captures the essential function-
ality of FaaS worker nodes. To estimate the cost of executing
this function on the remote Firecracker server compared to
locally, the horizontal dashed red line in Figure 1 shows the
function’s local bare-metal execution time (4.75 ms) and the
vertical dashed line shows the corresponding peak through-
put. Remotely executing the function significantly reduces
peak throughput (and hence energy efficiency), even when
all invocations go to hot (already booted) Firecracker Mi-
croVMs, as seen in the 100% hot curve. As we increase the
percentage of cold starts (i.e., requests for which a new Mi-
croVM must be booted), tail latency increases significantly
and saturates at far lower throughput. Although there are
unavoidable networking overheads compared to local bare-
metal function execution, this experiment demonstrates that
state-of-the-art FaaS system software still has significant over-
head, especially when booting a function sandbox is on the
critical path. While prior work has optimized the unloaded
startup latency of function sandboxes (e.g., by restoring state
from snapshots [19, 62, 9]), function execution still suffers
at high request loads and with high churn of function sand-
boxes. This current approach of retrofitting existing system
software, which is still rooted in the model of executing
long-running virtual machines, misses the opportunity to
harness the true potential of the serverless computing para-
digm.

In this paper, we argue for a different execution environ-
ment better suited to serverless, which permits much more
efficient resource usage and reduced startup latency, while
still supporting the use-cases that make serverless comput-
ing so attractive. Our model is to treat serverless functions as
true functions: bodies of code which take a declared list of in-
put parameters (e.g. data sets on stable storage) and output
another, declared list of output data sets which can be fed
to other functions. During execution, a function performs
no I/O - indeed, it barely needs to invoke any services from
system software.

This clear separation of computation (the function itself)
and I/O (now handled completely outside the function, log-
ically before or after its execution), immediately leads to
many opportunities to improve both the performance of func-
tions and the efficiency with which they can be supported
by the cloud platform. Moreover, the delegation of I/O to
cloud-implemented functions can provide better isolation,
obviating the need to ensure safety of the broad range of
user-issued system calls. More concretely, moving all I/O
and other system software dependencies out of the function
allows using simplified lightweight thread-like sandboxes
which can leverage a range of different hardware protection
mechanisms for secure isolation, such as CHERI memory ca-
pabilities [68], MMUs, etc.

Scheduling is also greatly simplified, since functions do
not block, and start running when their input is guaranteed
to be available. Dependencies between functions (and their
data) are more explicit, enabling the platform to further opti-
mize placement and scheduling. Functions can now also be
replaced with alternative implementations that generate the
same output for a given input, making it possible to trans-
parently use hardware accelerators when available.

We realize this model in Dandelion, a platform for server-
less function execution. We prototype Dandelion’s function
execution system. In benchmarks, our prototype running on
Arm’s Morello hardware platform [8] using CHERI memory
capabilities [68] for memory isolation, achieves 45× lower
tail latency for cold starts and reaches a 5× higher peak
throughput for 95% hot request load compared to Firecracker.
These gains come from replacing the current bloated worker
node software stack with a lightweight system that lever-
ages modern hardware to improve performance and energy
efficiency, without sacrificing security.

2 FAAS PROPERTIES AND
REQUIREMENTS

The serverless computing execution model — in which the
cloud platform automatically manages and scales resources
to execute user code based on request load— is appealing for
many applications, from event-driven web services to data
analytics [21, 42, 16].

Serverless functions have unique characteristics.They have
short execution time, often less than a second [59, 63] with
some platforms [16] seeing median execution time of only
60 ms. Functions generally have small resource footprints,
with a median memory allocation of only 170 MB per func-
tion [59]. FaaS applications tend to have more bursty load
than traditional cloud workloads [28, 20]. For example, the
peak-to-trough ratio of function invocation can be as high
as 500× [63]. Finally, invocations are sporadic, with fewer
than 20% invoked more than once per minute [59].

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

The characteristics of FaaS workloads lead to the follow-
ing requirements for FaaS platforms:

Low end-to-end function execution latency: A func-
tion should complete with minimal overhead compared to
its execution on a dedicated, bare-metal server.

High throughput per CAPEX: To maximize through-
put per capital expenditure, FaaS system software should
serve a high rate of function execution requests per server
to maximize utilization.

Energy efficiency: To minimize operational expenses —
particularly energy consumption — the FaaS system should
minimize CPU cycles for scheduling and executing functions.

Secure isolation: FaaS system softwaremust prevent un-
trusted user function code from tampering with the infras-
tructure or accessing the data or code of other functions.
Our threat model assumes that users trust the cloud provider,
as is customary today [4].

3 THE CURRENT STATE OF SERVERLESS
We discuss state-of-the-art system infrastructure for FaaS
function execution and scheduling, highlighting why cur-
rent solutions do not fully satisfy the requirements in §2.
Priorwork hasmainly focused onminimizing unloaded func-
tion latency, but optimizing throughput and energy efficiency
without sacrificing security is particularly challenging.

3.1 Secure Isolation of Functions
Today’s FaaS platforms isolate functions by implementing
sandboxes with one of three key techniques: virtualization,
containerization, or language runtime isolation.

Virtualization:Most commercial FaaS platforms rely on
virtualization to execute and isolate functions [40]. Special-
izedMicroVMs [2] greatly reduce startup times compared to
general-purpose VMs, but still have significant overheads,
particularly with high sandbox churn. MicroVMs also in-
crease a function’s memory footprint (e.g., 3×memory over-
head for a functionwith a 1MBworking set [57]), which lim-
its the degree of function co-location and thus the through-
put per worker node.

Snapshot restoration [61, 62, 45, 6, 64, 19, 18] andUnikernel-
based VMs [35, 14, 30, 37, 39] reduce startup delays down
to millisecond-range. However, snapshots introduce secu-
rity issues with random number generator state and address
space layout randomization [13] and neither of these ap-
proaches solves FaaS performance issues at high request load
and sandbox churn.

Containerization: Some FaaS platforms execute func-
tions in containers [24, 46, 32]. Containers rely on OS primi-
tives for resource isolation. Since theOS interface is a known
source of security vulnerabilities [23], mostmajor cloud providers

do not consider traditional containers sufficiently secure iso-
lation for FaaS. gVisor [24] improves container security by
adding a software interposition layer, however its perfor-
mance is similar to MicroVMs [7].
Runtime isolation: To further reduce sandbox initial-

ization and memory overheads, researchers have proposed
non-virtualized sandboxes, such as processes [10, 60, 11]
and isolation via language runtimes [12, 61, 65]. For instance,
WebAssembly runs user code in a sandboxed environment,
with the compiler or interpreter inserting runtime checks,
restricting the code to its own memory region [27]. Lan-
guage runtime isolation approaches trust the runtime to cor-
rectly set up and tear down sandboxes and implement the
system interface that programs use to read files, send net-
work requests, and access other OS resources [26]. This can
be problematic as it involves error-prone low-level memory
management, and bugs in the runtime can break isolation
guarantees. Formally verifying language runtime and sys-
tem interfaces is an active area of research [26], but end-to-
end system verification is challenging.

3.2 Function Scheduling and Data Passing
Traditional FaaS platforms are oblivious to the communica-
tion patterns and data dependencies between functions [25].
This simplifies scheduling as the platform treats each func-
tion as a black box, but forces functions to interact with
remote storage to exchange data, which adds latency and
cost [31, 48, 23, 33].

Cloud providers have started offering services, such as
AWS Step Functions [3] and Azure Durable Functions [41],
which allow users to chain functions and express their de-
pendencies. However, specifying a dependency in these sys-
tems is mainly a hint to spin up function sandboxes, rather
than away to optimize data transfer between them. Interme-
diate data that cannot be attached to an invocation request
still must be transferred via storage.

Pheromone [72] proposes a data-centric approach to func-
tion orchestration with a new API of data trigger primitives.
It currently relies on memory sharing for efficient imple-
mentation, which can be problematic in a public cloud envi-
ronment where securely isolating untrusted user code is a
strict requirement. Faa$t [53] and Palette [1] apply caching
to minimize interaction with remote storage, but they rely
on repeated requests from the same user or concurrently
running sandboxes. Boxer [69] enables functions to estab-
lish direct TCP connections with other functions, avoiding
round-trips to storage. However, its programming model
does not reveal function dependencies upfront to the plat-
form, limiting opportunities for data dependency-aware sched-
uling. Deng et al. [17] propose separating compute and I/O

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

to enable reproducible serverless computationswith correct-
ness guarantees. In §4, we will discuss how separating com-
pute and I/O enables a step change in FaaS platform effi-
ciency.

3.3 Heterogeneous Hardware Support
FaaS system software has not kept up with the tremendous
advances in cloud hardware over the past decade, such as
energy-efficient specialized processors and CPU security ex-
tensions. While serverless computing’s programming and
cost model are appealing to developers, the lack of support
for heterogeneous hardware in today’s FaaS platforms lim-
its practical use-cases [36]. It is not clear how tomap current
FaaS functions, which often intersperse computations with
cloud API calls [49], to non-CPU hardware.

Nevertheless, extending the serverless paradigm to het-
erogeneous hardware is an active area of research. Since
Kubernetes and Docker support GPU nodes, adding GPU-
enabled containers into FaaS frameworks is an obvious step
towards heterogeneous serverless [29, 43, 55, 73]. Another
technique for heterogeneous compatibility is to provide an
API-translating shim as Molecule [18] does for FPGAs and
Zhao et al. [73] does for GPUs. Kernel-as-a-service [47] takes
the approach closest to Dandelion’s separation of compute
and I/O by allowing users to explicitly define GPU kernels,
allowing a FaaS system to mix CPU and GPU functions. We
argue that, in the end, these well-engineered solutions shoe-
horn non-CPU execution units into a cloud that has evolved
for decades around the CPU.

4 DANDELION: A NEW VISION FOR FAAS
Instead of retrofitting existing system software to meet FaaS
application needs, we ask how would we design a clean slate
FaaS system software stack? We propose Dandelion, a server-
less computing platform that rethinks the FaaS program-
ming model and function execution system to improve per-
formance and energy efficiency, while maintaining secure
isolation guarantees.

The key idea of Dandelion is to strictly separate compute
tasks (i.e., arbitrary user computations) and I/O tasks (i.e.,
tasks that prepare the inputs and manage the outputs of
compute tasks) in FaaS applications. Separating compute and
I/O in the programmingmodel (§4.1) and function execution
model brings three key advantages. First, we can execute
applications — expressed as directed acyclic graphs (DAGs)
of pure compute functions (containing untrusted user code)
and I/O functions (implemented by the trusted Dandelion
platform) — with a more lightweight function sandbox de-
sign, without sacrificing security (§4.2). Functions can exe-
cute as lightweight threads (for performance)with hardware-
enforcedmemory isolation and noOS interface for untrusted

user code (for security). Second, Dandelion’s strict separa-
tion of compute and I/O functionsmakes bothmore amenable
to heterogeneous hardware acceleration to improve perfor-
mance and energy efficiency (§4.3). Finally, expressing ap-
plications asDAGs of pure compute and I/O exposes dataflow
to the underlying platform, enabling cluster scheduling and
data movement optimizations (§4.4).

We build an initial prototype of Dandelion which we eval-
uate in §5. While the rest of this section presents our over-
arching vision for Dandelion, our current prototype focuses
on demonstrating the benefits of decomposing applications
into compute and I/O using a particular memory isolation
mechanism (CHERI memory capabilities). Offloading func-
tions to heterogeneous hardware and exploring dataflow-
aware scheduling policies remain future work.

4.1 Programming Model
Dandelion’s programmingmodel strictly separates compute
and I/O by requiring developers to express their application
as a composition of pure compute and I/O functions. Com-
pute functions contain untrusted user code and have no di-
rect OS interface during function execution. Prohibiting sys-
tem calls for compute functions avoids the risk of untrusted
code exploiting vulnerabilities in the OS interface for privi-
lege escalation and tampering with the system. On the other
hand, I/O functions are implemented by the trusted Dande-
lion platform and exposed to developers as a high-level li-
brary. I/O functions enable interactions with cloud storage,
databases, and other web services, as well as other functions.

While providing I/O functions to support any possible
way of network communication is infeasible,1 it also is not
necessary as most web services provide HTTP interfaces.
As I/O functions execute trusted code that cannot be modi-
fied by the user, they have permissions for the limited set of
syscalls necessary to carry out their functionality (e.g., net-
working and file system calls). The main difference between
generic syscalls and Dandelion’s I/O API is the abstraction
exposed to the application. Syscalls by design are general
(e.g., sockets) and tightly integrated into the system. Our I/O
library executes isolated functions performing specialized
tasks (e.g., HTTP processing) allowing us to compartmental-
ize I/O functions and perform tailored input sanitization. Se-
curity issues may remain even with higher-level/narrower
APIs but are easier to contain within single-task I/O func-
tions as compared to the much broader Linux ABI. Dande-
lion avoids memory management system calls during func-
tion execution by pre-allocating an isolated memory region
for each function, as we will discuss in §4.2.
1As new hardware security primitives emerge, they may enable Dandelion
to support untrusted I/O functions, enabling support for more protocols.

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

1 input item eventPattern , serverList

2 output item totalSum

3 ephemeral set requestSet , logSet , partialSums

4
5 requestSet = makeGetRequests(serverList)

6 logSet = for each getRequest in requestSet :

system_HTTPGet(getRequest)

7 partialSums = for each log in logSet :

sumOccurance(log , eventPattern)

8 totalSum = sumSet(partialSums)

Figure 2: Example of a composition counting occur-
rences of a pattern in service responses

Dandelion provides a simple domain-specific language for
users to express applications (i.e., compositions) as DAGs
that describe howdata flows between functions.The domain-
specific language does not generate any function code; users
provide the implementation of functions as binaries or as
source code to be compiled by the platform. Since compute
functions cannot directly interact with the OS, Dandelion
requires each function’s inputs and outputs to be explicitly
specified. Inputs and outputs can be direct data, meaning
data that enters or leaves the platform attached to the func-
tion invocation request, or ephemeral data, which is pro-
duced by one function and consumed by another. Develop-
ers also specify the input and output data types either as
items, which are contiguous arrays of bytes, or sets of items.

Figure 2 shows an example map-reduce style composi-
tion that counts the occurrences of a specific event in a set
of log files. The composition uses three compute functions
(makeGetRequests, sumOccurance, sumSet) and one I/O func-
tion (system_HTTPGet).We assume the user has already reg-
istered each compute function with the Dandelion platform
by providing each function’s source code2 (which consists of
pure computations) along with the function’s number and
type of input and output arguments. The composition takes
two direct inputs: eventPattern is a string pattern identify-
ing an event and serverList is list of servers to query. The
composition has one direct output, totalSum, which will
contain the number of events found. The composition also
includes ephemeral variables that express dataflow between
functions and are only in scope during the composition ex-
ecution. Line 5 parses the input serverList and prepares a
HTTP GET request for each server. In line 6, the composi-
tion calls the system_HTTPGet I/O library function to issue
the GET requests. The for each _ in _ syntax invokes
parallel functions. Line 7 sums all occurrences of the event
pattern for each log. Line 8 sums occurrences across all logs
and stores them into the output variable totalSum.
2Users could also upload binaries, but would need to do so for each type of
hardware they want their function to be potentially run on.

network
queue

dispatcher
compute driver

memory domain

...engine
wait pool

ready pool

done pool

requests

responses

1

2
3

45

d
a
ta

engine engine

c
o
n
te

x
t

Figure 3: Dandelion function lifecycle

To simplify porting existing applications to Dandelion’s
programmingmodel and to support developing compute func-
tions in high-level languages, such as Python whose run-
time interacts extensively with the file system, Dandelion
provides a custom libc library. This allows functions to call
traditional libc APIs, which provide a variety ofmemory and
file management functionality. Under the hood, the custom
library implements memory and file management as regu-
lar function calls that operate on the memory region pre-
allocated to the function by the Dandelion platform, instead
of as traditional syscalls. Dandelion’s custom low-level li-
brary also keeps track of a simple structure that contains
information about the memory layout and locations of the
function’s inputs and outputs.

For now, Dandelion expects developers to manually ex-
press their applications as compositions of pure compute
functions and I/O functions. As future work, we will explore
automating decomposition [22]. For example, we can use
continuations [52] to split applications at I/O boundaries.

4.2 Function Execution System
We now describe how Dandelion leverages strict separation
of compute and I/O to execute functions efficiently with se-
cure isolation.
System architecture: Each worker node in a Dandelion

cluster runs Dandelion’s function execution system, which
consists of a dispatcher,memory domain managers, and com-
pute drivers. The dispatcher is the core part of a Dandelion
worker, responsible for demultiplexing incoming function
invocation requests for the worker, assigning sandboxes for
function execution, and keeping track of the run state and
data dependencies of a worker’s functions. The memory do-
main managers and compute drivers provide the dispatcher
with a high-level interface formemory and compute resource
management, respectively, which the dispatcher uses to cre-
ate and teardown sandboxes. A memory domain manager
controls a memory region and is responsible for enforcing
memory isolation between each context (i.e., subpart) of the

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

memory domain. A compute driver is responsible for sched-
uling function sandboxes on a group of compute resources
(i.e., compute engines), such as CPU cores.

The memory domain manager and compute driver allow
us to explore and support different isolation mechanisms
and hardware. For example, a memory domain manager can
implement memory isolation by using page-level permis-
sions in an MMU or more fine-grained mechanisms such
as CHERI memory capabilities [68], which are available on
some experimental CPU architectures [8, 67]. As an alter-
native to hardware isolation we could also consider soft-
ware solutions such as verifiedWebAssembly. Pure compute
functions do not need the WebAssembly System Interface,
which shrinks the necessary trusted compute base by a sig-
nificant margin and eliminates some of the composability
problems mentioned in §3.1. Additionally we plan to lever-
age the higher abstraction level the memory domain man-
ager and compute driver provide to extend the system to less
conventional hardware such as GPUs, TPUs, SmartNICs or
FPGAs.

Furthermore, with the narrow and clearly scoped func-
tionality of the dispatcher, memory domain managers, and
compute drivers, there is potential to formally verify these
components. Rather than relying on the defense-in-depth
approach to security for traditional VMs, Dandelion can in-
crease trustworthiness by relying on a small layer of prov-
ably correct software and a few hardware primitives.

Life of a request: When a function composition invoca-
tion request arrives at a Dandelion server, the dispatcher de-
multiplexes the request and adds all functions that are part
of the composition to the waiting pool (1⃝ in Figure 3). If the
code for a function is not already in memory from a prior
execution, the dispatcher will either load it from local disk
(if available) or initiate fetching the code from remote stor-
age. The dispatcher will fetch function executables compat-
ible with one or more locally-available compute drivers. A
function becomes ready (2⃝) when all its inputs and code
are available in memory. This can happen immediately on
arrival if the request includes all of a function’s inputs or
when other functions complete and their outputs become
available. To start executing a ready function, the dispatcher
selects an engine type on which to run the function. It then
asks a memory domain manager for a context compatible
with that engine type and fills in the function’s input data at
a pre-specified memory address. The fully prepared context
is run on an engine supplied by the corresponding compute
driver. (3⃝). To minimize the risk of side-channel attacks, en-
gines run each function to completion. This is akin to how
cloud providers like AWSminimize side channel risks by not
sharing physical CPU cores between tenants [5]. When the
function exits, it transitions from running to done state (4⃝).
The dispatcher cleans up the completed function’s context.

(5⃝). Clean up involves extracting all outputs from the con-
text and passing them on, either to other waiting functions
on the worker node or as part of a response to the user. Af-
ter handling all outputs, the dispatcher returns the context
and engine to the memory domain manager and compute
driver, respectively, to be sanitized and prepared for reuse.

4.3 Hardware Acceleration
By strictly separating compute and I/O, Dandelion makes
function executionmore amenable to hardware acceleration.
Accelerating I/O functions: I/O functions are only ex-

posed to users as a library, allowing for transparent use of
modern networking hardware to offload protocol process-
ing or even entire I/O functions to SmartNICs. In addition
to optimizing I/O latency and throughput, leveraging mod-
ern networking hardware can benefit the platform in sev-
eral ways. Offloading frees up CPU cycles, which can be
used to increase compute function throughput. Addition-
ally, offloading can decrease total energy consumption by
processing I/O requests on more energy-efficient devices.
Furthermore, ensuring that I/O functions (and potentially
other trusted platform code, such as the dispatcher) execute
on physically separate hardware than the CPU cores run-
ning untrusted compute functions provides extra protection
against attacks. This is akin to the AWS Nitro [5] approach
to I/O security and performance, which offloads I/O virtu-
alization to specialized hardware and physically separates
this functionality from the software hypervisor.

Accelerating compute functions: As Dandelion com-
pute functions are pure functions, they can be compiled and
optimized for heterogeneous hardware platforms more eas-
ily than functions that interleave computation with I/O or
other OS interaction. To maintain a “serverless” paradigm,
Dandelion can keep the selected hardware execution plat-
form abstracted from users. For example, Google’s XLA [54]
compiles Python code to execute on CPUs, GPUs, and TPUs.
Dandelion users can write code for compute functions that
is compatible with heterogeneous hardware compiler infras-
tructure to leverage CPU extensions like SIMD or transpar-
ently offload entire compute functions to accelerators like
GPUs, TPUs, or FPGAs. Even if the user does not code specif-
ically for hardware acceleration, compilers can more effec-
tively apply optimizations on pure functions as they allow
for stronger assumptions about side effects.

At first glance, short-running functionswith small resource
footprints may not seem like an ideal workload for hard-
ware acceleration: loading/unloading state to a PCI-attached
accelerator is slow and a single function may not make use
of the numerous available compute units. However, many
types of applications that stand to benefit from serverless re-
source management (e.g., real-time DNN inference) require

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

heterogeneous hardware like GPUs to meet performance
and energy consumption objectives. Hence, heterogeneous
hardware support for compute functions can improve FaaS
application latency. Furthermore, although a single function
may not consume an entire accelerator, multi-tenancy sup-
port is becoming common in GPUs [44] and FPGAs [50, 51,
34]. Offloading compute functions to hardware accelerators
can help improve specialized hardware’s currently low av-
erage utilization in datacenters [70, 71]. Overall, heteroge-
neous hardware support gives greater flexibility for func-
tion scheduling, to optimize hardware utilization, energy
consumption, and overall throughput.

4.4 Dataflow-Aware Scheduling
As Dandelion users develop applications as compositions
of compute and I/O functions, the dataflow between func-
tions is made explicit to the execution platform. Dandelion
can leverage dataflow information to avoid orminimize data
movement in several ways.

Just in time scheduling: Since function inputs are ex-
plicit, the dispatcher only schedules functions whose inputs
are guaranteed to be available. This ensures that functions
do not consume compute resources, which could have been
used more efficiently by other functions, while waiting for
inputs. Once a compute function begins executing, it does
not block. Hence, compute functions can also be run to com-
pletion, which improves cache locality [11] and reduces the
risk of side channel attacks by avoiding executing untrusted
functions concurrently on a physical core [5].
Data locality: For compositions that pass data between

functions, the cluster manager can prioritize scheduling pro-
ducers and consumers on the same machine. This avoids
transmitting ephemeral data over the network and enables
further optimizations, like zero-copy in-memory data pass-
ing between functions [61].

Efficient distributed processing: Running all functions
of a composition on a single machine is not always optimal.
For example, when a composition has a high degree of par-
allelism, its functions can be executed concurrently across
machines [38]. In such cases, the cluster manager can use
information in the dataflow graph to split the composition
into smaller parts in a way that minimizes the number of
data items exchanged between sub-compositions.

Caching: Given the same inputs, pure functions will pro-
duce the same outputs.3 Hence, Dandelion can cache the out-
puts of functions that are often invoked with the same argu-
ments and avoid re-computation. Dandelion can also cache
the outputs of I/O functions (e.g., data fetched from external
3Randomness or time also need to be inputs to the function if they are used
for computation, otherwise the function would not be pure.

storage services like S3) if the data is not expected to change
and no side effects are lost.
Near storage computation: As function inputs are ex-

plicitly specified, Dandelion can identify in advance what
data a composition needs to access. Compute functions can
be scheduled on worker nodes close to storage nodes that
hold the data or even directly on storage nodes if they have
sufficient resources, thus eliminating network transfers.

5 PROOF OF CONCEPT
As a proof of concept, we prototype Dandelion’s worker
node function execution system. Our goal is to demonstrate
Dandelion’s potential to close the performance and energy
efficiency gap between state-of-the-art FaaS system software
and bare-metal function execution. A cluster manager for
Dandelion for dataflow-aware scheduling and supporting
hardware acceleration are future work.
Dandelion prototype: Our current prototype consists

of 2500 lines of Rust and 740 lines of C with some inline
assembly. We focused on implementing support to execute
compute functions with inputs available in memory. We are
actively working on adding support for I/O functions and
compositions, to realize our full vision of Dandelion’s func-
tion execution system.

For memory isolation, we leverage Capability Hardware
Enhanced RISC Instructions (CHERI) [68] to run multiple
compute functions concurrently in a single address space.
CHERI is a set of CPU extensions that implements memory
capabilities as an alternative to traditional pointers, adding
a bounded memory range and set of permissions to each in-
teger pointer. CHERI enforces memory bounds and permis-
sion checks for each memory access and ensures these ca-
pability bounds and permissions cannot be increased.While
Dandelion can implementmemory isolationwith other hard-
ware mechanisms, including traditional memory manage-
ment units (MMUs), CHERI is a good fit for our use case
as it enables isolation of fine-grained and arbitrarily sized
memory regions.

We build and evaluate our prototype on top of Linux run-
ning on an ArmMorello [8] platform, an experimental archi-
tecture that adds CHERI support to ARMv8 CPU cores. The
dispatcher in our prototype runs a simple multi-threaded
HTTP service that accepts requests and prepares two min-
imal capabilities for each function: one for the function’s
code region and one for its data region. Cold requests are
those forwhich the function’s code is loaded fromdisk, whereas
hot requests already have the code in memory.

Metrics: To evaluate the benefits of lightweight isolation
we consider two metrics: end-to-end request latency and
peak achievable throughput. Tail latency is an important

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

0 200 400 600 800

Requests per Second

100

101

102

103

P
9
9
 R

e
q

u
e
s
t

L
a
te

n
c
y
 [

m
s
]

Dandelion

100% hot

95% hot

90% hot

Firecracker

100% hot

95% hot

90% hot

Figure 4: Dandelion and Firecracker have similar
throughput for 100% hot requests, but for 95% hot Dan-
delion achieves 5× higher throughput.

user performance metric, while the peak throughput indi-
cates how efficiently the provider can serve requests per
machine. Higher throughput implies lower cost and energy
consumption as fewer machines are needed to support a
given load.

Firecracker baseline: We run the Firecracker baseline
on the same Morello board as the Dandelion prototype Our
HTTP frontend relays requests to functions running in Mi-
croVMs. The functions inside MicroVMs also run a simple
HTTP server that accepts requests and responds with the
function output. For hot requests, we relay these requests
to already running MicroVMs whereas for cold requests, we
boot a new MicroVM using the Firecracker VMM [2] and
a Linux kernel compiled with the recommended configura-
tion.

Function workload: All functions in our experiments
perform 64 bit integer matrix multiplication𝑀 ×𝑀𝑇 , where
𝑀 ∈ Z128×128. For both systems we send requests containing
the size of the matrix and generate the input data on the ma-
chine to avoid saturating the low-bandwidth network link
on the Morello board.

Experiment results: Figure 4 plots 99th percentile la-
tency vs. throughput for Dandelion and Firecracker. We ob-
serve that Dandelion and Firecracker support similar through-
put for 100% hot requests, with Dandelion showing lower la-
tency even at high load. Dandelion also achieves 45× lower
tail latency for cold starts. Thus at 95% hot requests Dande-
lion supports 5× higher throughput compared to Firecracker.
This is because creating a function execution environment

0 200 400 600 800

Requests per Second

100

101

102

M
e
d

ia
n

 R
e
q

u
e
s
t

L
a
te

n
c
y
 [

m
s
]

Dandelion

100% hot

95% hot

90% hot

Firecracker

100% hot

95% hot

90% hot

Figure 5: Firecrackermedian latencies for 90% and 95%
hot requests degrade at the same point as tail latency,
while Dandelion stays stable.

in Dandelion (i.e., allocating a compute engine and initializ-
ing a memory context) requires significantly fewer CPU cy-
cles than booting a Firecracker MicroVM. The latency and
throughput for Dandelion do not significantly change with
lower rates of hot requests, because the only difference be-
tween hot and cold requests is that the binary for the func-
tion needs to be loaded from disk, which is a very cheap
operation compared to booting a MicroVM.

Figure 5 plots the median response latency. In the pres-
ence of cold starts, Firecraker baseline’s median latency sat-
urates at approximately the same load as its correspond-
ing tail latency due to the high CPU load of booting new
VMs. Compute functions compete for CPU cycles to make
progress and experience high queueing delayswhen toomany
VMs are trying to boot at the same time. In contrast, Dande-
lion’s median latency stays low, similar to its tail latency.

6 CONCLUSION
Although significant effort has gone into retrofitting and op-
timizing legacy cloud infrastructure for FaaS, we argue that
unlocking the true potential of FaaS requires revisiting as-
sumptions in the programming model and system software
design. Dandelion revisits the FaaS programmingmodel and
leverages modern hardware to provide a fast, secure, and
resource-efficient serverless computing platform. The key
design principle is to treat serverless functions as true func-
tions, with a clear separation of compute and I/O. This en-
ables a lightweight function sandbox design that maintains
secure isolation while reducing tail latency by over 45× and
increasing peak throughput by 5× compared to Firecracker.
Dandelion’s design also makes functions more amenable to

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

hardware acceleration and dataflow-aware scheduling opti-
mizations.

ACKNOWLEDGMENTS
The authors would like to thank Roberto Starc for his help
with evaluating the Dandelion prototype. Thank you also to
GustavoAlonso, Andrea Lattuada, Lazar Cvetković, Michael
Wawrzoniak, Dmitrii Ustiugov, Shweta Shinde, and Patrick
Stuedi for fruitful discussions and feedback. Finally, wewould
like to thank the SoCC’23 reviewers and our shepherd, Ryan
Marcus, for their helpful suggestions.

REFERENCES
[1] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Go-

har Irfan Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger,
and Rodrigo Fonseca. 2023. Palette load balancing: locality hints for
serverless functions. In Proceedings of the Eighteenth European Con-
ference on Computer Systems (EuroSys ’23). Association for Comput-
ing Machinery, Rome, Italy, 365–380. isbn: 9781450394871. doi: 10
.1145/3552326.3567496.

[2] AlexandruAgache,Marc Brooker, Alexandra Iordache, Anthony Liguori,
Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Fire-
cracker: lightweight virtualization for serverless applications. In 17th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 20). USENIX Association, Santa Clara, CA, (Feb. 2020),
419–434. isbn: 978-1-939133-13-7. https://www.usenix.org/confere
nce/nsdi20/presentation/agache.

[3] Amazon Web Services. 2023. AWS step functions: visual workflows
for distributed applications. AmazonWeb Services. Retrieved Sept. 4,
2023 from https://aws.amazon.com/step-functions/.

[4] Amazon Web Services. 2023. Security overview of AWS Lambda:
AWSwhitepaper. AmazonWeb Services. Retrieved June 1, 2023 from
https://aws.amazon.com/lambda/security-overview-of-aws-lambd
a/.

[5] Amazon Web Services. 2022. The security design of the AWS Nitro
system. Amazon Web Services. (Nov. 18, 2022). Retrieved June 1,
2023 from https://docs.aws.amazon.com/whitepapers/latest/securit
y-design-of-aws-nitro-system/security-design-of-aws-nitro-syste
m.html.

[6] Android Developers. 2023. Overview of memory management. An-
droid Developers. (May 9, 2023). Retrieved Sept. 4, 2023 from https:
//developer.android.com/topic/performance/memory-overview.

[7] Anjali, Tyler Caraza-Harter, and Michael M. Swift. 2020. Blending
containers and virtual machines: a study of firecracker and gvisor.
In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE ’20). Association
for Computing Machinery, Lausanne, Switzerland, 101–113. isbn:
9781450375542. doi: 10.1145/3381052.3381315.

[8] Arm Ltd. 2023. Arm morello program. Arm Ltd. Retrieved June 1,
2023 from https://www.arm.com/architecture/cpu/morello.

[9] Jeff Barr. 2022. Accelerate your lambda functionswith Lambda Snap-
Start. Amazon Web Services. (Dec. 9, 2022). Retrieved June 1, 2023
from https://aws.amazon.com/blogs/aws/new-accelerate-your-lam
bda-functions-with-lambda-snapstart/.

[10] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. 2012. Dune: safe user-level access
to privileged CPU features. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). USENIX Association,
Hollywood, CA, (Oct. 2012), 335–348. isbn: 978-1-931971-96-6. http

s://www.usenix.org/conference/osdi12/technical-sessions/present
ation/belay.

[11] AdamBelay, George Prekas, AnaKlimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. 2014. IX: a protected data-
plane operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 14). USENIX Association, Broomfield, CO, (Oct. 2014),
49–65. isbn: 978-1-931971-16-4. https://www.usenix.org/confere
nce/osdi14/technical-sessions/presentation/belay.

[12] Zach Bloom. 2018. Cloud computingwithout containers. CloudFlare.
(Nov. 9, 2018). Retrieved Sept. 4, 2023 from https://blog.cloudflare.c
om/cloud-computing-without-containers/.

[13] Marc Brooker, Adrian Costin Catangiu, Mike Danilov, Alexander
Graf, ColmMacCarthaigh, andAndrei Sandu. 2021. Restoring unique-
ness in microvm snapshots. (2021). arXiv: 2102.12892 [cs.CR]. doi:
10.48550/arXiv.2102.12892.

[14] James Cadden,Thomas Unger, Yara Awad, HanDong, Orran Krieger,
and Jonathan Appavoo. 2020. Seuss: skip redundant paths to make
serverless fast. In Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys ’20) Article 32. Association for Comput-
ing Machinery, Heraklion, Greece, 15 pages. isbn: 9781450368827.
doi: 10.1145/3342195.3392698.

[15] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. 2019. The rise of serverless computing. Commun. ACM,
62, 12, (Nov. 2019), 44–54. doi: 10.1145/3368454.

[16] Datadog. 2021.The state of serverless (2021). Datadog. (May 1, 2021).
Retrieved June 1, 2023 from https://www.datadoghq.com/state-of-
serverless-2021/.

[17] Yuhan Deng, Angela Montemayor, Amit Levy, and Keith Winstein.
2022. Computation-centric networking. In Proceedings of the 21st
ACMWorkshop on Hot Topics in Networks (HotNets ’22). Association
for ComputingMachinery, Austin, Texas, 167–173. isbn: 9781450398992.
doi: 10.1145/3563766.3564106.

[18] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang,
andHaibo Chen. 2022. Serverless computing on heterogeneous com-
puters. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’22). Association for ComputingMachinery, Lausanne,
Switzerland, 797–813. isbn: 9781450392051. doi: 10.1145/3503222.3
507732.

[19] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-
gangQin, QixuanWu, andHaiboChen. 2020. Catalyzer: sub-millisecond
startup for serverless computing with initialization-less booting. In
Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’20). Association for ComputingMachinery, Lausanne, Switzer-
land, 467–481. isbn: 9781450371025. doi: 10.1145/3373376.3378512.

[20] Simon Eismann, Joel Scheuner, Erwin van Eyk,Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexan-
dru Iosup. 2022.The state of serverless applications: collection, char-
acterization, and community consensus. IEEE Transactions on Soft-
ware Engineering, 48, 10, 4152–4166. doi: 10.1109/TSE.2021.3113940.

[21] Simon Eismann, Joel Scheuner, Erwin van Eyk,Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexan-
dru Iosup. 2021. Serverless applications: why, when, and how? IEEE
Software, 38, 1, 32–39. doi: 10.1109/MS.2020.3023302.

[22] Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whit-
taker, Parveen Patel, Ivan Posva, and Amin Vahdat. 2023. Towards
modern development of cloud applications. In Proceedings of the
19th Workshop on Hot Topics in Operating Systems (HOTOS ’23). As-
sociation for Computing Machinery, Providence, RI, USA, 110–117.
isbn: 9798400701955. doi: 10.1145/3593856.3595909.

https://doi.org/10.1145/3552326.3567496
https://doi.org/10.1145/3552326.3567496
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/security-overview-of-aws-lambda/
https://aws.amazon.com/lambda/security-overview-of-aws-lambda/
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://doi.org/10.1145/3381052.3381315
https://www.arm.com/architecture/cpu/morello
https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://aws.amazon.com/blogs/aws/new-accelerate-your-lambda-functions-with-lambda-snapstart/
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://arxiv.org/abs/2102.12892
https://doi.org/10.48550/arXiv.2102.12892
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3368454
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://doi.org/10.1145/3563766.3564106
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1109/TSE.2021.3113940
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1145/3593856.3595909

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

[23] CristianoGiuffrida, AntonKuijsten, andAndrew S. Tanenbaum. 2012.
Enhanced operating system security through efficient and fine-grained
address space randomization. In 21st USENIX Security Symposium
(USENIX Security 12). USENIXAssociation, Bellevue,WA, (Aug. 2012),
475–490. isbn: 978-931971-95-9. https://www.usenix.org/conferenc
e/usenixsecurity12/technical-sessions/presentation/giuffrida.

[24] gVisor. 2023. What is gvisor? gVisor. Retrieved Sept. 4, 2023 from
https://gvisor.dev/docs/.

[25] JosephM.Hellerstein, JoseM. Faleiro, JosephGonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, andChenggangWu. 2019.
Serverless Computing: One Step Forward, Two Steps Back. In Pro-
ceedings of the 9th Biennial Conference on Innovative Data Systems
Research (CIDR). (Jan. 2019). http://cidrdb.org/cidr2019/papers/p11
9-hellerstein-cidr19.pdf.

[26] Evan Johnson, Evan Laufer, Zijie Zhao, DanGohman, ShravanNarayan,
Stefan Savage, Deian Stefan, and Fraser Brown. 2023. WaVe: a veri-
fiably secure WebAssembly sandboxing runtime. In 2023 IEEE Sym-
posium on Security and Privacy (SP), 2940–2955. doi: 10.1109/SP462
15.2023.10179357.

[27] Evan Johnson, DavidThien, Yousef Alhessi, ShravanNarayan, Fraser
Brown, Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian Ste-
fan. 2021. Trust but verify: SFI safety for native-compiled Wasm. In
Network and Distributed System Security Symposium (NDSS). Inter-
net Society, (Feb. 2021).

[28] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.
Centralized core-granular scheduling for serverless functions. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SoCC ’19). As-
sociation for Computing Machinery, Santa Cruz, CA, USA, 158–164.
isbn: 9781450369732. doi: 10.1145/3357223.3362709.

[29] JaewookKim, Tae Joon Jun, DaeyounKang, DohyeunKim, andDaey-
oung Kim. 2018. GPU enabled serverless computing framework. In
2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), 533–540. doi: 10.1109/PDP201
8.2018.00090.

[30] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El,
Don Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the operat-
ing system for virtual machines. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14). USENIXAssociation, Philadelphia, PA,
(June 2014), 61–72. isbn: 978-1-931971-10-2. https://www.usenix.or
g/conference/atc14/technical-sessions/presentation/kivity.

[31] Ana Klimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: elastic ephemeral
storage for serverless analytics. In 13th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 18). USENIX Asso-
ciation, Carlsbad, CA, (Oct. 2018), 427–444. isbn: 978-1-939133-08-3.
https://www.usenix.org/conference/osdi18/presentation/klimovic.

[32] Knative. 2023. Knative serverless containers. Knative. Retrieved Sept. 4,
2023 from https://knative.dev/docs/.

[33] Marcin Kolny. 2023. Scaling up the Prime Video audio/video mon-
itoring service and reducing costs by 90%. Amazon Web Services.
(Mar. 22, 2023). Retrieved June 1, 2023 from https://www.primevid
eotech.com/video-streaming/scaling-up-the-prime-video-audio-vi
deo-monitoring-service-and-reducing-costs-by-90.

[34] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS
abstractions make sense on FPGAs? In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX
Association, (Nov. 2020), 991–1010. isbn: 978-1-939133-19-9. https:
//www.usenix.org/conference/osdi20/presentation/roscoe.

[35] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-
thanam,Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Ştefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent Mathy,
Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft:

fast, specialized unikernels the easy way. In Proceedings of the Six-
teenth European Conference on Computer Systems (EuroSys ’21). As-
sociation for ComputingMachinery, Online Event, United Kingdom,
376–394. isbn: 9781450383349. doi: 10.1145/3447786.3456248.

[36] Xiayue Charles Lin, Joseph E. Gonzalez, and Joseph M. Hellerstein.
2020. Serverless boom or bust? an analysis of economic incentives.
In 12th USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 20). USENIX Association, (July 2020). https://www.usenix.or
g/conference/hotcloud20/presentation/lin.

[37] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh,Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: library operating systems for
the cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’13). Association for Computing Machinery,
Houston, Texas, USA, 461–472. isbn: 9781450318709. doi: 10.1145/2
451116.2451167.

[38] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. 2021. SONIC: application-aware
data passing for chained serverless applications. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association,
(July 2021), 285–301. isbn: 978-1-939133-23-6. https://www.usenix
.org/conference/atc21/presentation/mahgoub.

[39] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My vm is lighter (and safer) than your container. In
Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). Association for ComputingMachinery, Shanghai, China,
218–233. isbn: 9781450350853. doi: 10.1145/3132747.3132763.

[40] Holly Mesrobian and Marc Brooker. 2019. AWS re:Invent: a server-
less journey: AWS Lambda under the hood. Amazon Web Services.
(Dec. 9, 2019). Retrieved June 1, 2023 from https://www.youtube.co
m/watch?v=xmacMfbrG28.

[41] MicrosoftAzure. 2023.What are durable functions?MicrosoftAzure.
Retrieved June 1, 2023 from https://learn.microsoft.com/en-us/azur
e/azure-functions/durable/durable-functions-overview.

[42] Ingo Müller, Renato Marroquıń, and Gustavo Alonso. 2020. Lam-
bada: interactive data analytics on cold data using serverless cloud
infrastructure. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’20). Association for
ComputingMachinery, Portland, OR, USA, 115–130. isbn: 9781450367356.
doi: 10.1145/3318464.3389758.

[43] DianaM.Naranjo, Sebastián Risco, Carlos deAlfonso, Alfonso Pérez,
Ignacio Blanquer, and Germán Moltó. 2020. Accelerated serverless
computing based on GPU virtualization. Journal of Parallel and Dis-
tributed Computing, 139, 32–42. doi: https://doi.org/10.1016/j.jpdc
.2020.01.004.

[44] NVIDIA Corporation. 2023. NVIDIA Corporation. Retrieved Sept. 4,
2023 from https://www.nvidia.com/en-us/technologies/multi-insta
nce-gpu/.

[45] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Har-
ter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018.
SOCK: rapid task provisioning with serverless-optimized contain-
ers. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (USENIXATC ’18). USENIXAssociation, Boston,
MA, USA, 57–69. isbn: 9781931971447. https://www.usenix.org/co
nference/atc18/presentation/oakes.

[46] OpenFaas. 2023. Openfaas: serverless functions made simple. Open-
Faas Ltd. Retrieved Sept. 4, 2023 from https://www.openfaas.com/.

[47] Nathan Pemberton, Anton Zabreyko, Zhoujie Ding, RandyKatz, and
Joseph Gonzalez. 2022. Kernel-as-a-service: a serverless interface to

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://gvisor.dev/docs/
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://doi.org/10.1109/SP46215.2023.10179357
https://doi.org/10.1109/SP46215.2023.10179357
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1109/PDP2018.2018.00090
https://doi.org/10.1109/PDP2018.2018.00090
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://knative.dev/docs/
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1145/3447786.3456248
https://www.usenix.org/conference/hotcloud20/presentation/lin
https://www.usenix.org/conference/hotcloud20/presentation/lin
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.1145/3132747.3132763
https://www.youtube.com/watch?v=xmacMfbrG28
https://www.youtube.com/watch?v=xmacMfbrG28
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://doi.org/10.1145/3318464.3389758
https://doi.org/https://doi.org/10.1016/j.jpdc.2020.01.004
https://doi.org/https://doi.org/10.1016/j.jpdc.2020.01.004
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.openfaas.com/

Function as a Function SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

GPUs. (2022). arXiv: 2212.08146 [cs.DC]. doi: 10.48550/arXiv.2212
.08146.

[48] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
fast and slow: scalable analytics on serverless infrastructure. In Pro-
ceedings of the 16th USENIX Conference on Networked Systems Design
and Implementation (NSDI’19). USENIX Association, Boston, MA,
USA, 193–206. isbn: 9781931971492. https : / /www.usenix .org/co
nference/nsdi19/presentation/pu.

[49] Giuseppe Raffa, Jorge Blasco Alis, Dan O’Keeffe, and Santanu Ku-
marDash. 2023. AWSomePy: a dataset and characterization of server-
less applications. In Proceedings of the 1st Workshop on SErverless
Systems, Applications and MEthodologies (SESAME ’23). Association
for Computing Machinery, Rome, Italy, 50–56. isbn: 9798400701856.
doi: 10.1145/3592533.3592811.

[50] Francesco Restuccia, Andres Meza, and Ryan Kastner. 2021. Aker: a
design and verification framework for safe and secure soc access
control. In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE Press, Munich, Germany, 1–9. doi: 1
0.1109/ICCAD51958.2021.9643538.

[51] Francesco Restuccia, Andres Meza, Ryan Kastner, and Jason Oberg.
2023. A framework for design, verification, and management of SoC
access control systems. IEEE Transactions on Computers, 72, 2, 386–
400. doi: 10.1109/TC.2022.3209923.

[52] John C. Reynolds. 1993. The discoveries of continuations. Lisp Symb.
Comput., 6, 3–4, (Nov. 1993), 233–248. doi: 10.1007/BF01019459.

[53] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa,
Paul Batum,Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis,
and Ricardo Bianchini. 2021. Faa$T: a transparent auto-scaling cache
for serverless applications. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC ’21). Association for Computing Machin-
ery, Seattle, WA, USA, 122–137. isbn: 9781450386388. doi: 10.1145
/3472883.3486974.

[54] Amit Sabne. 2020. XLA : compiling machine learning for peak per-
formance. (2020). https://research.google/pubs/pub50530/.

[55] Klaus Satzke, Istemi EkinAkkus, RuichuanChen, Ivica Rimac,Manuel
Stein, Andre Beck, Paarijaat Aditya, Manohar Vanga, and Volker
Hilt. 2021. Efficient GPU sharing for serverless workflows. In Pro-
ceedings of the 1st Workshop on High Performance Serverless Comput-
ing (HiPS ’21). Association for ComputingMachinery, Virtual Event,
Sweden, 17–24. isbn: 9781450383882. doi: 10.1145/3452413.3464785.

[56] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory deduplication for serverless computing with
Medes. In Proceedings of the Seventeenth European Conference on
Computer Systems (EuroSys ’22). Association for Computing Ma-
chinery, Rennes, France, 714–729. isbn: 9781450391627. doi: 10 . 1
145/3492321.3524272.

[57] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sand-
berg, and Boris Grot. 2022. Lukewarm serverless functions: charac-
terization and optimization. In Proceedings of the 49th Annual Inter-
national Symposium on Computer Architecture (ISCA ’22). Associa-
tion for ComputingMachinery, New York, New York, 757–770. isbn:
9781450386104. doi: 10.1145/3470496.3527390.

[58] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonza-
lez, Ion Stoica, and David A. Patterson. 2021. What serverless com-
puting is and should become: the next phase of cloud computing.
Commun. ACM, 64, 5, (Apr. 2021), 76–84. doi: 10.1145/3406011.

[59] Mohammad Shahrad, Rodrigo Fonseca, ÍñigoGoiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:
characterizing and optimizing the serverless workload at a large
cloud provider. In Proceedings of the 2020 USENIX Conference on

Usenix Annual Technical Conference (USENIX ATC’20) Article 14.
USENIX Association, USA, 14 pages. isbn: 978-1-939133-14-4. htt
ps://www.usenix.org/conference/atc20/presentation/shahrad.

[60] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina
Delimitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019.
X-containers: breaking down barriers to improve performance and
isolation of cloud-native containers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’19). Association
for ComputingMachinery, Providence, RI, USA, 121–135. isbn: 9781450362405.
doi: 10.1145/3297858.3304016.

[61] Simon Shillaker and Peter Pietzuch. 2020. FAASM: lightweight iso-
lation for efficient stateful serverless computing. In Proceedings of
the 2020 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC’20) Article 28. USENIX Association, USA, 15 pages.
isbn: 978-1-939133-14-4. https://www.usenix.org/conference/atc20
/presentation/shillaker.

[62] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, analysis, and optimization of
serverless function snapshots. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’21). Association for Com-
puting Machinery, Virtual, USA, 559–572. isbn: 9781450383172. doi:
10.1145/3445814.3446714.

[63] AoWang, Shuai Chang, Huangshi Tian, HongqiWang, Haoran Yang,
Huiba Li, Rui Du, and Yue Cheng. 2021. FaaSNet: scalable and fast
provisioning of custom serverless container runtimes at Alibaba
cloud function compute. In 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21). USENIX Association, (July 2021), 443–457.
isbn: 978-1-939133-23-6. https://www.usenix.org/conference/atc21
/presentation/wang-ao.

[64] Kai-Ting AmyWang, RaysonHo, and PengWu. 2019. Replayable ex-
ecution optimized for page sharing for a managed runtime environ-
ment. In Proceedings of the Fourteenth EuroSys Conference 2019 (Eu-
roSys ’19) Article 39. Association for Computing Machinery, Dres-
den, Germany, 16 pages. isbn: 9781450362818. doi: 10.1145/330242
4.3303978.

[65] Sutao Wang. 2021. Thin Serverless Functions with GraalVM Native
Image. Master’s thesis. ETH Zurich, (Apr. 22, 2021). doi: 10.3929/et
hz-b-000480335.

[66] Nicholas C.Wanninger, Joshua J. Bowden, Kirtankumar Shetty, Ayush
Garg, and Kyle C. Hale. 2022. Isolating functions at the hardware
limit with virtines. In Proceedings of the Seventeenth European Con-
ference on Computer Systems (EuroSys ’22). Association for Comput-
ing Machinery, Rennes, France, 644–662. isbn: 9781450391627. doi:
10.1145/3492321.3519553.

[67] Robert N. M. Watson. 2023. CHERI RISC-V Project Page. University
of Cambridge. Retrieved Sept. 4, 2023 from https://www.cl.cam.ac
.uk/research/security/ctsrd/cheri/cheri-risc-v.html.

[68] Robert N.M.Watson, JonathanWoodruff, Peter G. Neumann, Simon
W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks
Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton,
Michael Roe, Stacey Son, and Munraj Vadera. 2015. CHERI: a hybrid
capability-system architecture for scalable software compartmental-
ization. In 2015 IEEE Symposium on Security and Privacy, 20–37. doi:
10.1109/SP.2015.9.

[69] MichalWawrzoniak, IngoMüller, GustavoAlonso, and Rodrigo Bruno.
2021. Boxer: data analytics on network-enabled serverless platforms.
In 11th Conference on Innovative Data Systems Research, CIDR 2021,
Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org.
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper12.pdf.

https://arxiv.org/abs/2212.08146
https://doi.org/10.48550/arXiv.2212.08146
https://doi.org/10.48550/arXiv.2212.08146
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1145/3592533.3592811
https://doi.org/10.1109/ICCAD51958.2021.9643538
https://doi.org/10.1109/ICCAD51958.2021.9643538
https://doi.org/10.1109/TC.2022.3209923
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1145/3472883.3486974
https://research.google/pubs/pub50530/
https://doi.org/10.1145/3452413.3464785
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3406011
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3297858.3304016
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1145/3445814.3446714
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.3929/ethz-b-000480335
https://doi.org/10.3929/ethz-b-000480335
https://doi.org/10.1145/3492321.3519553
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html
https://doi.org/10.1109/SP.2015.9
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper12.pdf

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic

[70] QizhenWeng,Wencong Xiao, Yinghao Yu,WeiWang, ChengWang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS
in the wild: workload analysis and scheduling in Large-Scale het-
erogeneous GPU clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association,
Renton, WA, (Apr. 2022), 945–960. isbn: 978-1-939133-27-4. https :
//www.usenix.org/conference/nsdi22/presentation/weng.

[71] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou,
Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: dy-
namic scaling on GPU clusters for deep learning. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI

20). USENIX Association, (Nov. 2020), 533–548. isbn: 978-1-939133-
19-9. https://www.usenix.org/conference/osdi20/presentation/xiao.

[72] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. 2023. Fol-
lowing the data, not the function: rethinking function orchestration
in serverless computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, (Apr. 2023), 1489–1504. isbn: 978-1-939133-33-5. https
://www.usenix.org/conference/nsdi23/presentation/yu.

[73] Ming Zhao, Kritshekhar Jha, and Sungho Hong. 2023. GPU-enabled
function-as-a-service for machine learning inference. (2023). arXiv:
2303.05601 [cs.DC]. doi: 10.48550/arXiv.2303.05601.

https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/osdi20/presentation/xiao
https://www.usenix.org/conference/nsdi23/presentation/yu
https://www.usenix.org/conference/nsdi23/presentation/yu
https://arxiv.org/abs/2303.05601
https://doi.org/10.48550/arXiv.2303.05601

	Abstract
	1 Introduction
	2 FaaS Properties and Requirements
	3 The Current State of Serverless
	3.1 Secure Isolation of Functions
	3.2 Function Scheduling and Data Passing
	3.3 Heterogeneous Hardware Support

	4 Dandelion: A new vision for FaaS
	4.1 Programming Model
	4.2 Function Execution System
	4.3 Hardware Acceleration
	4.4 Dataflow-Aware Scheduling

	5 Proof of concept
	6 Conclusion
	Acknowledgments

