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ABSTRACT
The growth of serverless computing has led to a widespread reex-

amination of the cloud software upon which it is based. In parallel,

the flattening of single core performance has led to a resurgence

of interest in manycore systems, trading absolute performance for

system throughput, an appropriate match for the serverless par-

adigm. However, the combination of deep cloud system software

stacks and slow hardware simulation techniques has limited the

exploration of serverless-native CPUs. We argue that the RISC-V

ecosystem offers an opportunity to tackle the intersection of these

topics. We present an exploratory comparison of several RISC-V

SoC configurations and commercial products running serverless

workloads. We find that the RISC-V cores offer reasonable perfor-

mance, but more importantly provide researchers the ability to

run more realistic software workloads. This allows for meaningful

exploration of the interactions between system software, serverless

workloads, and specialized hardware.
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1 INTRODUCTION
Serverless computing, also known as Function-as-a-Service (FaaS),

is increasingly being adopted in many application domains due to

its ease-of-use, high elasticity, and fine-grained billing benefits [66,

25, 26, 39, 19, 20, 59]. The rise of FaaS has prompted researchers and

developers to rethink nearly every aspect of the cloud computing

software stack, from the high-level programming model to the low-

level system execution implementations, including the design of

primitives for secure task isolation, networking, and storage. Server-

less functions’ unique characteristics (i.e. stateless, short-lived, and

sporadically invoked functions with small resource footprints) have
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motivated new systems software to quickly boot and execute func-

tions with secure isolation [2, 30], densely pack functions per ma-

chine [49, 64], and manage resources efficiently at cluster scale [84,

50, 42, 62].

As serverless computing’s share of the cloud is growing [66, 20],

it is important to not only consider the implications for cloud soft-

ware stacks, but also for cloud hardware. While FaaS was originally

imagined as a technique for using spare capacity in otherwise used

machines, the reality is that cloud providers have dedicated clusters

of standard servers to serve function requests. These FaaS clusters

must aggressively multiplex hundreds or thousands of incoming

and running functions in order to obtain acceptable throughput.

However, initial studies have found that modern CPU features

often provide limited benefits for short-lived functions [68, 65]. For

example, the effective (but complex) branch predictors found in

server-class CPUs take time to warm up for maximum performance,

making them less effective for short-running tasks [68]. Thus there

is renewed interest [70, 72, 54] in exploring manycore CPU archi-

tectures of the past [35, 57, 52, 67]. These systems have CPUs with

simpler microarchitectures, trading single-threaded performance

for greater computing density and overall throughput.

Unfortunately, the performance implications of new CPU ar-

chitecture features for serverless computing have been explored

predominantly in slow and/or simplified simulators. This approach,

discussed further in Section 2.3, limits researchers’ ability to run

the deep software stacks that are used in modern serverless sys-

tems. High-level programming language runtimes with memory,

file, and network accesses are significantly more difficult to explore

in simulators. This difficulty is exacerbated when one includes vir-

tualization, containerization, orchestration, and scheduling present

in serverless systems. Put another way, unlike hardware design

space exploration for compute intensive workloads that results in

application specific accelerators (e.g. a TPU), FaaS hardware ex-

ploration must include the system software (hypervisor, kernel,

containers), disk I/O, and networking (TCP/IP, RPC) in addition to

a broad swath of diverse workloads. To fully explore the promise

of co-designed, application-specific hardware [34], we need tools

that work at the system level.

In this paper, we argue that systems researchers should look to

the RISC-V ecosystem to explore the design of future, cloud- and

serverless-native CPU architectures. Modern out-of-order RISC-V

cores [13, 86, 87, 83] are quite capable and this work demonstrates

that they can offer reasonable performance for common server-

less workloads. These cores are developed in frameworks which

allow for agile, parameterized development of pipelines, caches,

branch predictors, prefetchers, and even coherence protocols [6, 83,
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81]. The large community (both academic and commercial) built

around RISC-V has lead to a broad improvement of performance

and features including hardware threads, vectorization instructions,

virtualization support, and more. Moreover, these designs can be

evaluated in a cycle-accurate way while running full-stack work-

loads at interactive speeds (25–100 MHz).

Linux RISC-V supports a full range of runtimes and applica-

tions, providing accurate experiments using full systems including

memory hierarchies and networking [43]. The synthesized designs

can be used to accurately estimate power consumption and sili-

con area [51]. These same designs can even be taped-out SoCs for

real-world prototyping [83, 86, 10]. Independently of the role com-

mercial RISC-V silicon ends up playing in datacenters—if any at

all—we argue that using more accurate CPU models and SoC infras-

tructure will lead to more meaningful and impactful architecture

and systems research.

Section 2 discusses the characteristics of serverless workloads,

previous cloud-native systems, and current techniques for hard-

ware simulation. We present the opportunities available for hard-

ware/software co-design in Section 3. In Section 4 we demonstrate

the feasibility of this ecosystem for research by evaluating serverless

workflows on parameterized RISC-V SoCs.We conclude in Section 5

with a discussion of the missing pieces for a broader adoption of

RISC-V as a research platform, and perhaps as a serverless-native

CPU.

2 BACKGROUND
Much like HPC or ML workloads, serverless computing possesses

several unique characteristics (§ 2.1), suggesting that systems re-

searchers should look beyond traditional server processors and

explore a broader hardware space. We give a brief overview of

other attempts at cloud-native CPUs (§ 2.2) and discuss limitations

of current hardware simulation techniques (§ 2.3).

2.1 FaaS Characteristics
Data about what functions users are running on FaaS offerings is

limited, however we do have some data on how functions are run-

ning. The clearest sources are industry serverless function traces [69,

75, 40]. These reveal that functions running on commercial FaaS

offerings show markedly different behavior than traditional data-

center applications. These functions are extremely short-lived with

median execution times reported anywhere from seconds [75], less

than a second [69], to as low as 60 ms [20]. Functions also demon-

strate highly variable invocation patterns [21, 40], both in periods of

large peak demand followed a low trough (up to 500× [75] difference

between peak and trough). The time between invocations varies

as well, with medians measured from seconds [75] to hours [69].

As Wang et al. point out [75], almost half the functions request a

new instance to be cold started every second or less. Shahrad et
al. [69] are not as explicit about the frequency of cold starts but they
highlight that 45% of all applications are invoked less than once per

hour, which strongly indicates that these functions are highly likely

to experience a cold start. FaaS applications have small resource
footprints. 90% of functions use less than 400 MB and the median ap-

plication uses only 170 MB of memory [69]. These properties stand

in contrast to more traditional cloud applications, which usually

run for a long time on a fixed amount of resources.

Serverless CPU Design Exploration. The aforementioned

FaaS workload properties suggest that serverless functions do not

benefit as much from many performance optimizations built into

modern CPUs as long-running applications do [68, 74, 65]. Microar-

chitectural state that needs to be warmed up, e.g., branch predictors

and caches, is not as effective as it is for traditional applications,

motivating exploration into faster training predictors and smaller

LLC-to-core ratios [68]. The significant data movement required

to pull function snapshots has lead to software mechanisms for

prefetching data [74], which could be augmented by hardware ex-

tensions. To handle the challenge of ephemeral data in serverless

scenarios Wang et al. propose Memento [77], a set of architectural

mechanisms to allocate and free directly in cache, and effectively

manage a memory pool. Due to the high degree of function inter-

leaving on a system, instruction cache misses are a major source of

slowdown, prompting proposals for hardware mechanisms to save

instruction state [65].

The large caches, heavy-duty predictors, aggressive reordering,

and specialized instruction set extensions all take up a large amount

of silicon space and energy budget, especially for short-lived func-

tions that often spend a significant amount of time blocking for

data. This growing body of work indicates that existing server-

class processors are not necessarily well-matched to short-running,

independent, bursty functions.

2.2 Cloud Hardware Architectures
The rise of new hardware architectures. As the single-core CPU
performance gains decreased over the past decade, other consid-

erations besides absolute per-core performance have come into

play [73]. Factors such as maximum power consumption, energy

efficiency, and core density are playing an increasing role. This

has lead to the prevalence of specialized hardware such as GPUs,

TPUs [41], VCUs [58] and FPGAs, as well as core-dense, energy-

efficient SoCs. Several recent and upcoming systems favor simple

cores to achieve high density and compute throughput: ARM-based

cloud SoCs [4, 5, 7], manycore supercomputing platforms [27], and

recent announcements of AMD Zen4 [1] and Intel Sierra Forest [36].

There is also ongoing work in commercializing RISC-V-based cloud

chips such as the Xuantie 910 [14] and Ventana Veyron [12]. This

trend suggests that cloud providers justify significant hardware

engineering costs to improve performance-per-watt and compute

density.

Compute density optimized CPUs. The desire to trade-off

single-threaded performance for compute density in the cloud has

been explored by both academic and industrial researchers. “Scale-

out" processors [52] for the cloud attempt to maximize overall

throughput of a given size die, with the goal of greater performance
density. Early commercial attempts to increase compute density by

using simpler cores include Intel’s Single-chip Cloud Computer [35],

Tilera [57], and Cavium ThunderX-1 [15]. The SPARC M7 [45] at-

tempted to increase density via symmetric multithreading (SMT),

offering up to 256 threads per socket. These products were primar-

ily aimed at monolithic multi-threaded applications, which, while
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offering significant parallelism, are not as short-running and in-

dependent as serverless functions. Building upon this work into

early so-called “cloud-native" CPUs [52, 35, 57], a new generation

of manycore systems has been developed [54, 10]. Other work aims

to maximize compute density while adding cloud- and serverless-

specific features such as RPC acceleration and hardware support

for context switching [72].

The evaluation of these scale-out systems has taken many forms

over the years, spanning a large number of cloud benchmarks [24,

56, 29]. These workloads are complex and have varying execu-

tion characteristics not only between applications but in different

phases within the same application.While this newest generation of

cloud-native CPUs has not yet been thoroughly evaluated, there are

indications that less-powerful, simpler CPUs can offer an attractive

price-to-performance ratio [16]. The complexity of communication,

scheduling, and orchestration is an integral part of cloud work-

loads, and work has shown that the performance of interdependent

services have far-reaching effects on the system as a whole [15, 29].

Even if the functions themselves are fairly short-lived, the complex

interactions and depth of the software stack make simulation and

modeling challenging.

2.3 Hardware Simulation
Given this rapidly changing landscape, systems programmers need

to explore hardware architectures for specific workloads. How-

ever, simulating even a simple CPU is a complex process, and

there are dozens of simulators for all aspects of computer systems.

There exist several commonly used simulators for CPU architec-

tures (gem5 [53], ZSim [63], Sniper [11]), memory simulation (e.g.

DRAMSim [76, 61, 48]) and cache simulation (e.g. CMP$im [38]).

While detailing the broad array of methods for computer archi-

tecture simulation is beyond the scope of this paper (or indeed a

book!), wewill briefly discuss its current state and its challenges. For

more details, Akram et al. [3] offer an overview of several common

simulators, assessing their accuracy and performance.

Aswithmost techniques of modeling, there is a trade-off between

model accuracy, simulation speed, and cost. A functional simulation

is much faster to run and update than a cycle-accurate (CA) simu-

lator, while a CA model can give much more accurate results. For

most simulators, speed is often between one thousand and one

million instructions per second (1 KIPS–1 MIPS). For comparison,

our simple image processing workflow executes about three billion

instructions in ≈0.5 s. For a simulation running at the high end

(1 MIPS), this is nearly an hour of simulation time. At the low end

(1 KIPS), as is often the case in complex cycle-accurate models, sim-

ulating this function would require over a month. While simulation

techniques are continuously improving [32, 31], we argue that for

system-level analysis, these models are still too slow, low-fidelity,

and don’t map directly into hardware.

On the other end of the spectrum are register-transfer level (RTL)

models of CPUs which, historically, have been chip designers’ most

closely guarded secrets. With the advent of the RISC-V ISA, and

open, agile toolchains for generating RTL from high-level descrip-

tions, researchers can design, simulate, and synthesize for FPGAs,

and even tape out SoCs. With FPGAs, RTL models can be synthe-

sized and simulated on dedicated simulation engines [22], or run

in a cluster using FireSim [43]. FPGA-accelerated simulation offers

interactive speeds (up to 100 MHz), allowing for full-system simu-

lations which map directly to real systems. Until now, this was not

possible for almost anyone, requiring resources only found inside

major chip designers.

3 CO-DESIGN OPPORTUNITIES
The ability to run full system stacks on synthesizable hardware has

several implications for systems researchers. To evaluate the per-

formance effects of hardware features (e.g. vector instructions), re-

searchers use a set of representative benchmarks (e.g. SPEC or PAR-

SEC). Because these traditional workloads are highly optimized and

computationally intense, monolithic applications, one can extract

meaningful traces to feed into architectural simulators. However,

the cloud is built upon deep software stacks consisting of some com-

bination of user code, runtimes (including JIT), containers, virtual

machines, operating systems, and hypervisors. Therefore, gaining

meaningful insight into the impact of microarchitectural features

on cloud workloads requires a much more complex simulation. The

interplay between application code, guest kernel, hypervisor, and

the hardware eliminates the possibility of obtaining realistic results

from simplified simulations (e.g. gem5 syscall emulation mode).

In fact, much of the fundamental “cloud-ness" of a workload

stems from the fact that it is virtualized (or containerized) than

from the actual computation it does. For example, video transcoding

and web page templating are both considered realistic “serverless

workloads" [18, 44], even though transcoding builds on decades of

computationally complex, highly optimized, hardware accelerated

code and web page templating is implemented using simple Python

scripts. Moreover, when examining microservices and serverless

workflows, faithful modeling must include the communication be-

tween services because of their complex interplay and cascading

effects [29, 15]. Therefore, if we want to examine microarchitec-

tural features that accelerate the cloud (e.g. RPC acceleration, vir-

tualization extensions), we need to use the entire stack. Modern

techniques for isolation such as CHERI hardware capabilities [79]

or enclaves in the context of serverless [46, 88] can be evaluated

and expanded upon in RISC-V [80, 89, 47, 23] We argue that one

of the best tools available for this type of work, the RISC-V hard-

ware/software ecosystem, is too often ignored by both systems and

computer architecture researchers in favor of off-the-shelf hard-

ware or low-fidelity simulations.

4 EVALUATION
To demonstrate the feasibility of our integrated systems approach

to FaaS architecture exploration, we evaluate the performance of

several RISC-V configurations and three different commercial pro-

cessors (Table 1) microbenchmarks and a set of serverless work-

flows written in Python (Table 2). Python is often cited as the most

commonly used FaaS runtime [20], and has very good support

from cloud providers. However, as shown in Table 2, these Python

scripts often call specialized libraries (e.g. OpenBLAS, OpenCV)

or compiled programs, demonstrating performance beyond the

Python runtime. Section 4.1 introduces the benchmarks, Section 4.2

presents the test platforms, and Section 4.3 discusses the results

obtained.
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Table 1: Per-Core Configurations

Name Core ISA OoO Issue L1 Size (I/D) L2 Size CoreMark/Mhz

Rocket Rocket riscv64 ✗ 1 16/16 KiB 512 KiB 2.14

SmallBoom BOOM riscv64 ✓ 3 16/16 KiB 512 KiB 2.27

MediumBoom BOOM riscv64 ✓ 4 16/16 KiB 512 KiB 3.76

LargeBoom BOOM riscv64 ✓ 5 32/32 KiB 512 KiB 4.88

MegaBoom BOOM riscv64 ✓ 8 32/32 KiB 512 KiB 5.31

StarFive VisionFive2 [71] JH7110 riscv64 ✗ 2 32/32 KiB 2 MiB 3.30

Huawei Kunpeng 920 [82] ARMv8.2 aarch64 ✓ 4 64/64 KiB 512 KiB 7.20

Intel Xeon Gold 6238T [37] Cascade Lake x86-64 ✓ 8 32/32 KiB 1 MiB 7.54

Table 2: Benchmarks Evaluated

Benchmark Type Language
matmul Micro Python (numpy)
floater Micro Python

linpack Micro Python (numpy)
image processing Workflow Python (OpenCV )
text processing Workflow Python

compilation Workflow Python, GCC, Make

4.1 Benchmarks
There are several serverless benchmarking suites available [44, 85,

18, 74]. However, these often model entire FaaS systems across

multiple nodes using containerization/virtualization, and orches-

tration frameworks. Our initial goal is to determine the feasibility

of running serverless workloads on open RISC-V cores, ergo we opt
to write stand-alone benchmarks inspired by the aforementioned

workloads. Additionally, because we want to evaluate the develop-

ment ecosystem for testing microarchitectural features in relation

to FaaS functions, we chose to collect data on the workloads them-

selves without containerization. Nevertheless, we do have Docker

running in our testbed and a deeper exploration of virtualization

overheads is ongoing.

Microbenchmarks. The three microbenchmarks are written

in Python and are similar to those found in other suites [44]. Ma-

trix multiplication (matmul) and linpack consist of floating point
manipulation of 𝑛 ×𝑛 matrices. linpack is a traditional linear alge-
bra benchmark consisting of three matrix manipulations: solving

𝐴𝑥 = 𝑏 for 𝑥 , inverting matrix 𝐴, and computing 𝐴′ × 𝑥 = 𝑏. Both

use numpy which in turn calls an optimized C linear algebra li-

brary (OpenBLAS) to do the actual computation. The floating point

microbenchmark calculates a series of floating point operations

1
. These microbenchmarks are a stand-in for compute-intensive

workloads, approaching a lower performance bound for the less

complex CPUs. They also demonstrate the value of vectorized and

other specialized instructions.

Serverless Workflows. To evaluate workloads that are more

representative of those found in serverless suites, we developed

threeworkflows, each consisting of several chained functions. These

1


𝑎 = sin𝑥

𝑏 =
√
𝑎

𝑐 = cos𝑏

𝑑 =
√
𝑐

Figure 1: The image processing workflow consists of a simpli-
fied dataflow graph for processing photos including, thumb-
nailing, and face detection. While the graph does suggest a
degree of parallelism, we note that in our evaluation, the
pipeline is executed as a single thread.

functions pass data between them, each one taking a single action,

creating a data flow graph.

We developed workflows for image processing, text processing,

and compilation, similar to those found in many serverless bench-

marks [18, 85, 74, 44]. The image processing workflow is a simplified

version of cloud processing an uploaded image using OpenCV [55,

21]. Figure 1 shows the workflow as tested. An image is passed

as input to the function and various scaling functions are called,

making thumbnails of different sizes. The image is also sent to a

face detection algorithm which pulls a classifier, and identifies the

number of faces found in the image. This workflow can be expanded

to include additional processing steps, such as metadata processing,

more complex inference algorithms or filtering. The text processing

workflow exercises several commonly used cloud functions (MD5

hashing, BZ2 compression, and AES encryption). The compilation

workflow aims to replicate the functionality of a Gitlab runner CI

pipeline. The hash of a compressed source tarball is checked and

then the source is decompressed. The resulting code is configured,

compiled, then cleaned up. For this example, we compile Apache

v2.4.41. Note that while the benchmarks themselves consist of a

single thread, they are running on top of the Python runtime, which

in turn is running in a full version Linux which is regularly context
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switching to handle standard operating system daemons and han-

dles events including long-latency operations such as filesystem

I/O.
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Figure 2: We compare the instructions-per-cycle (IPC) of the
Python matmul and floater microbenchmarks. linpack (not
shown) shows very similar behavior to the matmul bench-
mark. The input size is on the x-axis and the instructions
retired per cycle is found on the y-axis. In all of these bench-
marks, the Xeon processor outperforms the ARM and RISC-V
cores. For small input sizes, the majority of the program is
spent on initializing the Python interpreter and importing
modules, which explains why there is little difference for
small input sizes.

4.2 Experimental Platform
We evaluated the in-order Rocket core [9] and four configurations

of the out-of-order (OoO) BOOM core [87] (Table 1). The BOOM

design exposes many parameters, which are adjusted heuristically

for each configuration according to the decode width. To evaluate

the fidelity of FPGA-based experiments, we also ran the serverless

workflows on a StarFive VisionFive2 RISC-V SBC with the JH7110

core [71]. Additionally, to compare the performance of simple RISC-

V cores with server-class CPUs, we ran all the benchmarks on

a Huawei Kunpeng 920 [82] and an Intel Xeon Gold 6238T [37].

Per-core configurations can be found in Table 1. The BOOM and

Rocket cores implement the RV64GC ISA [78], while the JH7110

additionally supports the B extension for bit manipulation [60].

The RISC-V platforms run Debian GNU/Linux with the soft cores

using kernel 6.2.5 and the StarFive uses 5.15.0. The Kunpeng and

Xeon systems run Ubuntu 20.04 LTS. All platforms run Python 3.11.

All FPGA-based experiments are conducted on Enzian, a CPU/FPGA

research platform [17]. We obtain RTL for configuration using

Chipyard [6] and synthesize FPGA bitstreams.We boot a full Debian

Linux image using the FPGA DRAM as both a tmpfs filesystem

and main memory. To conduct our experiments we interact with

the system over UART, which we access over ssh through the

CPU. An advantage of this experimental method is that the CPU

architecture can be saved as a bitstream, while the filesystem can be

easily changed to expand the evaluation without time-consuming

resynthesis of the system.

4.3 Comparative Performance
For these preliminary results we measure the instruction and cycle

counts using perf stat, using taskset to pin our workloads to

a core. The measured CoreMark/Mhz [28] scores can be found

in Table 1. The instructions-per-cycle (IPC) of microbenchmarks,

run on all machines, are shown in Figure 2. We note that the IPC

is bounded by decode width, though this is only the upper-most

bound.

Instruction Count. We first compare the number of instruc-

tions required to run each workflow (Figure 3). The difference in

instruction counts indicates the relative state of the RISC-V ISA and

compiler.RISC-V is still undergoing changes to its ISA specification,

and is expected to improve in this regard over time. As we can

see from ARMv8’s example, a RISC ISA can achieve significantly

higher code density than the evaluated RISC-V variants. Both the

Rocket and BOOM cores only support the RV64GC variant. Since

their release, many extensions to the RISC-V ISA have been rati-

fied [60], (e.g. bit manipulation extension) as well as support for

vector instructions. The VisionFive2 results show that support for

these more specialized instructions can dramatically increase code

density, reducing the total instruction count required for a given

workload. While further exploration of these results is necessary

to draw definitive conclusions, the large differential between the

number of instructions necessary to execute the sameworkload sug-

gests further exploration of specialized instructions or accelerators

for RISC-V and greater optimizations of compilers and runtimes.

IPC. We also compare the IPC across platforms and workloads,

shown in Figure 4. In general, the Xeon and Kunpeng significantly

outperform the RISC-V cores. Although the Kunpeng has compara-

ble IPC to the MegaBoom, both the ARMv8 and x86 cores require

significantly fewer instructions to execute the workload, resulting

in fewer cycles. Relative to MegaBoom, Kunpeng and Xeon require

4.55x and 7.19x fewer cycles on average for the workflows. While

wider BOOM cores show a significant improvement over their nar-

rower counterparts, we also note that the BOOM cores achieve

much less of their maximum IPC (3 and 4 for the Large- and Mega-

Boom) compared to Kunpeng and Xeon processors, suggesting that

its design is bottlenecked. This difference is exacerbated for the

Python microbenchmarks, which represent workloads closer to

traditional CPU application domains. Furthermore, the commercial

JH7110 core, an in-order dual-issue design, has comparable IPC

to the significantly more complex LargeBoom, further indicating

that there is much room for improvement in optimizing existing

designs.

Conclusion.While the RISC-V cores are overall less performant

than their counterparts, the MegaBoom offers an IPC comparable to

amodern ARMv8 core for our representative FaaS workloads.While

the RV64GC variant of RISC-V does require many more instructions

for the same computation, our evaluation of the RV64GCB variant
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Figure 4: We compare IPC across all of the experimental platforms for each of the FaaS pipelines described in Section 4.1. The
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shows that adding support for more recent RISC-V extensions can

significantly improve code density.

5 CONCLUSIONS AND FUTUREWORK
Our preliminary work demonstrates the value of having an open,

fast, and accurate technique for analyzing the impact of microar-

chitectural features on native-scale workloads. These applications

make use of a complete system software stack, including system

calls and I/O. The cores are parametrically synthesized, generat-

ing a varied set of modern SoCs, able to be tested interactively.

Putting this together, we believe that the RISC-V ecosystem shows

significant maturity and therefore, computer architects and sys-

tems researchers should use it as a tool to better understand the

microarchitectural implications of cloud workloads.

Our work proceeds in three primary directions. First, we’re con-

tinuing our parametric exploration of microarchitectural features

(e.g. cache size, cache layout, ROB sizes, etc.) to make stronger hy-

potheses about workload sensitivity to SoC characteristics. Second,

we want to examine virtualization and containerization overheads

by containerizing our benchmarking suite, and incorporating more

complex orchestration using vHive [74] and SeBS [18]. Finally,

we aim to use our insight to better evaluate the feasibility of a

serverless-native CPU, which trades off single-threaded perfor-

mance for significant improvements in throughput (via density)

and power-efficiency (in instructions per Joule).

While we believe that RISC-V is a well-suited platform for both

research and ultimately production systems, there are still several

areas in which it can improve. There remains a gap between the
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single-thread performance of open source RISC-V cores and mod-

ern, equivalent ARM or x86 cores. Similarly, toolchain improve-

ments (e.g. optimizing compiler support) could further improve

performance. Fortunately, there are several academic and indus-

trial groups steadily improving the performance of RISC-V cores.

Hardware threads (harts) are part of the RISC-V ISA specification,

allowing researchers to reexplore “the valley" between manycores

and many threads [33] in the context of modern architectures and

workloads. Furthermore, there are several projects to bring state-of-

the-art features such as CHERI hardware capabilities [79], persistent

memory support [8], and confidential computing/trusted execution

extensions [47, 23] to RISC-V.

Given the heterogeneity of both modern hardware and software,

we believe that in the era of co-design, cloud researchers cannot

afford to ignore hardware design, and hardware designers must use

more realistic cloud workloads. While developing in RISC-V has its

challenges, the combination of accuracy, performance, and speed

of simulation for real workloads makes a strong argument for a

prominent space in the systems researcher’s toolbox.
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