
1

Move your code, not your data

Michael Giardino, Siddharth Gupta, Lukas Humbel, René Müller, Anirban Nag

— Huawei Confidential —



2

The view of the Memory Wall from the core

Memory type Cycles Time @ 3 GHz Instructions 
(6-wide)

L2 (hit) 14 4.6 ns 84
L3 (hit) 50 16.6 ns 300
DRAM ~180 80 ns 1,080
CXL memory ~750 250 ns 4,500

Example modern server processor 
• 3 GHz
• 6-wide execution
• 320 instruction reorder buffer



3

So how do we solve this?

 Bigger reorder buffers to find more parallelism (512 in Sierra Forest) 
 Find more threads to run in parallel using SMT (2, 4, and 8 way)
 Attempt to prefetch data close to the core (smarter multilevel prefetchers)
 Bigger caches to hold this prefetched data
 Identify and move hot pages closer to data 



4

Vector Search Example

Data structure sizes for 1B vector BigANN
Vector size: 128 B 
Index: 122 GiB
Layer0: 256 GiB

Configuration Median 
Latency

All in local memory 1.0x
Index local, vectors far 1.75x
All data far 2.36x

Layer 0
(contains all vectors)

Layer 1

query vector
nearest neighbor

Layer 2
Entry layer

f(..)



5

Taxonomy of far memory performance mitigation techniques

Application 
managed?

OS 
managed?

Hypervisor 
managed?

Infrastructure

Hypervisor 
paging

OS paging

DMA

Heterogenous 
NUMA

Function 
shipping

Load/store?

Local 
accesses?

RPC

pmalloc, madvice

RDMA

TPP, Infiniswap

Overprovisioning

s3 cache

Application com
plexity, perform

ance

Techniques Examples

yes

no yes

no

no

no

no

yes

yes

yes



6

Overheads of different far memory access techniques

Shared Memory Region

Local Memory

Local Node Remote Node

Local MemoryEx
ec

ut
io

n 
Ti

m
e 

(u
s)

#elements accessed

Pointer chasing workload



7

Overheads of different far memory access techniques

Shared Memory Region

Local Memory Remote Memory

Local Node Remote Node

Local Memory

Far Memory

Ex
ec

ut
io

n 
Ti

m
e 

(u
s)

#elements accessed

Pointer chasing workload



8

Overheads of different far memory access techniques

Shared Memory Region

Local Memory Remote Memory

Local Node Remote Node

Local Memory

Far Memory

Function Shipping (RPC) 

Ex
ec

ut
io

n 
Ti

m
e 

(u
s)

#elements accessed

Pointer chasing workload

52
62

351



9

Overheads of different far memory access techniques

Shared Memory Region

Local Memory Remote Memory

Local Node Remote Node

Local Memory

Far Memory

Function Shipping (RPC) 
Thread Shipping

Ex
ec

ut
io

n 
Ti

m
e 

(u
s)

#elements accessed

Pointer chasing workload

52
62

351 419



10

Overheads of different far memory access techniques

Shared Memory Region

Local Memory Remote Memory

Local Node Remote Node

Local Memory

Far Memory

Function Shipping (RPC) 
Thread Shipping

Function Shipping (dynamic so)

Ex
ec

ut
io

n 
Ti

m
e 

(u
s)

#elements accessed

Pointer chasing workload

FS(dynamic so)

52
62

115

351 419 788



11

Overheads of different far memory access techniques

Shared Memory Region

Local Memory Remote Memory

Local Node Remote Node

Local Memory

Far Memory

Function Shipping (RPC) 
Thread Shipping

Function Shipping (dynamic so)

Function Shipping (WASM)

Ex
ec

ut
io

n 
Ti

m
e 

(u
s)

#elements accessed

Pointer chasing workload

F(WASM)

52
62

115

8330

351 419 788 57448



12

Query plan shipping

selecti
vity # groups

End-to-end time Speedup over remote 

near-
processing Plan shipping far-processing Local plan shipping

4% 1 1.8s 1.8s 3.4s 1.9x 1.9x

4% 1,000 1.8s 1.8s 3.4s 1.9x 1.9x

4% 250,000 2.4s 2.8s 3.9s 1.6x 1.4x

4% 2,499,754 2.8s 14.9s 4.6s 1.6x 0.3x

in-memory
Arrow Table

116 GB

query 
stateSQL 

query

Near-processing &
query state near

Far memoryNear memory
in-memory
Arrow Table

116 GB

SQL 
query

Far-processing &
query state far

query 
state

Far memoryNear memory

in-memory
Arrow Table

116 GB

SQL 
query

Plan shipping

Parser, 
Plan 
generator

Results 
Arrow 
stream



13

Ongoing questions and Conclusions

Questions
 What is the minimum useful 

abstraction for code?
 Is there hardware that can help 

accelerate the migration of execution 
between cores/sockets/nodes/racks?

 What kind of mechanisms can we use 
to identify when it is appropriate to 
pay the overhead of shipping?

 What kind of software and system 
architectures make the most sense 
for far memory systems?

Conclusions
1. Memory is just too far away
2. We’ve spent a lot of time moving 

data to compute, but we need more 
emphasis on moving compute to 
data


	Move your code, not your data
	The view of the Memory Wall from the core
	So how do we solve this?
	Vector Search Example
	Taxonomy of far memory performance mitigation techniques
	Overheads of different far memory access techniques
	Overheads of different far memory access techniques
	Overheads of different far memory access techniques
	Overheads of different far memory access techniques
	Overheads of different far memory access techniques
	Overheads of different far memory access techniques
	Query plan shipping
	Ongoing questions and Conclusions

