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The view of the Memory Wall from the core

Memory type Cycles Time @ 3 GHz Instructions 
(6-wide)

L2 (hit) 14 4.6 ns 84
L3 (hit) 50 16.6 ns 300
DRAM ~180 80 ns 1,080
CXL memory ~750 250 ns 4,500

Example modern server processor 
• 3 GHz
• 6-wide execution
• 320 instruction reorder buffer
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So how do we solve this?

 Bigger reorder buffers to find more parallelism (512 in Sierra Forest) 
 Find more threads to run in parallel using SMT (2, 4, and 8 way)
 Attempt to prefetch data close to the core (smarter multilevel prefetchers)
 Bigger caches to hold this prefetched data
 Identify and move hot pages closer to data 
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Vector Search Example

Data structure sizes for 1B vector BigANN
Vector size: 128 B 
Index: 122 GiB
Layer0: 256 GiB

Configuration Median 
Latency

All in local memory 1.0x
Index local, vectors far 1.75x
All data far 2.36x

Layer 0
(contains all vectors)

Layer 1

query vector
nearest neighbor

Layer 2
Entry layer

f(..)
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Taxonomy of far memory performance mitigation techniques
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Overheads of different far memory access techniques
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Overheads of different far memory access techniques
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Overheads of different far memory access techniques
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Overheads of different far memory access techniques
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Overheads of different far memory access techniques
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Query plan shipping

selecti
vity # groups

End-to-end time Speedup over remote 

near-
processing Plan shipping far-processing Local plan shipping

4% 1 1.8s 1.8s 3.4s 1.9x 1.9x

4% 1,000 1.8s 1.8s 3.4s 1.9x 1.9x

4% 250,000 2.4s 2.8s 3.9s 1.6x 1.4x

4% 2,499,754 2.8s 14.9s 4.6s 1.6x 0.3x

in-memory
Arrow Table

116 GB

query 
stateSQL 

query

Near-processing &
query state near

Far memoryNear memory
in-memory
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SQL 
query

Far-processing &
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query 
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Far memoryNear memory
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SQL 
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Parser, 
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Results 
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Ongoing questions and Conclusions

Questions
 What is the minimum useful 

abstraction for code?
 Is there hardware that can help 

accelerate the migration of execution 
between cores/sockets/nodes/racks?

 What kind of mechanisms can we use 
to identify when it is appropriate to 
pay the overhead of shipping?

 What kind of software and system 
architectures make the most sense 
for far memory systems?

Conclusions
1. Memory is just too far away
2. We’ve spent a lot of time moving 

data to compute, but we need more 
emphasis on moving compute to 
data
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